
CSE 521: Design and Analysis of Algorithms I Spring 2016

Lecture 2: Concentration Bounds
Lecturer: Shayan Oveis Gharan March 30th Scribe: Syuzanna Sargsyan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Laws of large numbers imply for a sequence of i.i.d. random variables X1, X2, . . . with mean µ, the sample
average, 1

n (X1 + X2 + · · · + Xn), converges to µ as n goes to infinity. Concentration bounds provide a
quantitative distance between the sample average and the expectation. In this lecture we review several
of these fundamental inequalities. In the next few lectures we will see applications of these inequalities in
designing randomized algorithms.

Let D be a distribution. Suppose we want to estimate the mean E[X] of D and we only have access to
independent samples of D, X ∼ D. One way to estimate the mean is to independently draw samples
X1, X2, ..., Xn from the distribution and return the empirical mean: 1

n

∑n
i=1Xi. By law of large numbers

the empriical mean converges to E[ [X]] as n → ∞. In this lecture we will prove bounds on the number of
samples one needs to obtain an estimate of the mean within ε-additive error.

2.1 Markov’s Inequality

Markov’s Inequality: For any nonnegative random variable (R.V.) X and any number k,

P[X ≥ k] ≤ E[X]

k
.

Proof.

E[X] =
∑
i

i · P [X = i] ≥
∑
i≥k

i · P [X = i] ≥ k ·
∑
i≥k

P[X = i] ≥ k · P [X ≥ k] .

For example, for k = 3
2E[X], we can write

P
[
X ≥ 3

2
E[X]

]
≤ E[X]

3
2E[X]

=
2

3
. (2.1)

Example: Suppose the average grade of CSE 521 is 2.0 (out of 4.0). Give a lower bound on the fraction
of students who received a grede at most 3.0. We assume that a grade can be any real number between 0.0
and 4.0.

In this example E [X] = 2.0. Taking k = 3.0 = 3
2E[X] we get that at least 1/3 of the students received grade

at most 3.0.

It turns out that if the only thing that we know about X is its expectation the Markov’s inequality will be
the best bound we can hope for. For a tight example consider the following scenario; assume k ≥ E[X] and
let
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X =

{
k + ε w.p. E[X]

k

0 w.p. 1− E[X]
k

where ε is very close to 0.

Application 1. We use Markov’s inequality to prove an upper bound on the number of fixed points of a
random permutation. Recall that a permutation is a one to one and onto map σ : {1, 2, ..., n} → {1, 2, ..., n}.
We say i is a fixed point of σ iff σ(i) = i.

Claim 2.1. With probability at least 1− 1/k a uniformly random permutation σ has at most k fixed points.

Proof. The trick is to define the right random variable and then use the Markov’s inequality. Define Xi =
I{σ(i) = i} and X =

∑
Xi. Observe that X is the number of fixed points of σ. We can write down the

expectation of X using the linearity of expectation.

E [X] =

n∑
i=1

E [Xi] =

n∑
i=1

P [Xi] = 1.

The second equality uses that fact that the expectation of an indicator random variable is equal to its

probability. The last equality holds since σ is a uniform permutation, i.e. P [Xi] =
1

n
. Thus, by Markov’s

inequality P [X ≥ k] ≤ 1/k.

2.2 Chebyshev’s Inequality

Recall the definition of the variance:

Var(X) := E [X − E [X]]
2

= E
[
X2 + (E [X])2 − 2XE [X]

]
= E[X2] + (E[X])2 − 2E[XE[X]] = E[X2]− (E[X])2. (2.2)

The second and the third equalities follow from the linearity of expectaion. Note that since (X − E[X])2 is
a nonnegative random variable,

E[X2] ≥ (E[X])2.

The standard deviation of random variable X is defined as σ(X) :=
√

Var(X).

Chabishev’s inequality: For any random variable X and any ε > 0,

P [|X − E[X]| ≥ ε] ≤ Var(X)

ε2

or equivalently for any number k > 0,

P [|X − E[X]| ≥ kσ] ≤ 1

k2

We can read the above inequality as follows: For any random variable X with probability at least 90%, X
is within three standard deviation of its expectation.
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Proof. Let Y := (X − E[X])2 ≥ 0. By Markov’s inequality

P[Y ≥ ε2] ≤ E[Y ]

ε2

By the definition of Y ,

P
[
(X − E[X])2 ≥ ε2

]
≤ Var(X)

ε2
.

Or, equivalently,

P [|X − E[X]| ≥ ε] ≤ Var(X)

ε2
.

Next, we describe two applications of Chebyshev’s inequality.

Application 2. Polling. Consider a large set of individuals each voting 0 or 1 on a presidency candidate,
and let p be the expectation. We see that using only O(1/ε2) independent samples from the set we can
estimate p within and eps-additive error.

Let X1, X2, ..., Xn be the votes of n independently chosen individuals in this society. Observe that, for each
i,

Xi =

{
1 with probabilityp

0 with probability1− p

Define a R.V. X =

∑
Xi

n
. Obviously,

E [X] =
1

n

n∑
i=1

E [Xi] = p.

We use the Chebyshev’s inequality to show that for n = O(1/ε2) w.h.p. X is within an additive distance ε
of p. To use Chebyshev’s inequality, we first need to upper bound the variance of X. We use the following
lemma to calculate the variance of sum of independent random variables.

Lemma 2.2. Let X1, X2, ..., Xn be pairwise independent random variables. This means that for any i 6= j,
E [XiXj ] = E [Xi]E [Xj ]. For X = X1 + . . . Xn, we have,

Var(X) =
∑

i = 1n Var(Xi).

Proof. By (2.2),

Var(X) = E[X2]− (E[X])2 =
∑
i,j

E[XiXj ]−
∑
i,j

E[Xi]E[Xj ],

where the second equality follows by linearity of expectation. By pairwise independence property, for any
i 6= j, E[XiXj ] = E[Xi]E[Xj ]. Therefore, the above expression simplifies to,

Var(X) =

n∑
i=1

E[X2
i ]−

∑
i

(E[Xi])
2 =

n∑
i=1

Var(Xi).
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In the polling example, we can write,

Var(X) =

n∑
i=1

Var(Xi/n) =
1

n2

n∑
i=1

Var(Xi).

Recall that Xi is a Bernoulli random variable with prior p. We have, Var(Xi) = E[X2
i ]−E[Xi]

2. Obviously,
E[Xi] = p. In addition,

E[X2
i ] = 12 · p+ 02 · (1− p) = p.

So, Var(Xi) = p− p2 ≤ 1/4 and

Var(X) ≤ 1

n2
· n · 1

4
=

1

4n
.

Now, by Chebyshev’s inequality

P[|X − p| ≥ ε] ≤
1
4n

ε2
=

1

4nε2

This means that for n = 3/ε2, X approximates p within an additive error of ε with 90% probability.

Application 3. Birthday Paradox. Let X1, ..., Xn ∈ {1, 2, ..., N} chosen independently and uniformly
at random. How large should n be to get a collision, i.e., to get Xi = Xj for some i 6= j? We show that if

n <
√
N then w.h.p. there is no collision. And, if n > C.

√
n then with probability at least 1/C2 there is a

collision.

Define a R.V. Yij = I(Xi = Xj) and let Y =
∑
i,j Yij . Note that Yij ’s are dependent random variables but

they are pairwise independent. This crucial fact allows us to use Lemma 2.2 to calculate the variance of Y .

Observe that Y is an integral random variables which counts the number of collisions. So, we are interested
in P[Y ≥ 1]. We start by calculating the first moment of Y .

E[Y ] =
∑
i<j

E[Yij ] =
∑
i<j

P[Yij ] =

(
n
2

)
N
.

By Markov’s inequality

P[Y ≥ 1] ≤ E[Y ]

1
=

(
n
2

)
N
≈ n2

2N
,

Therefore, if n ≤
√
N with probability at least 1/2 there is no collisions.

Now, let us study the case where n ≥
√
N . Here, we use the Chebyshev’s inequality. First, observe that

since Y is an integral random variable,

P[Y = 0] ≤ P[|Y − E[Y ]| ≥ E[Y ]].

By Chebyshev’s inequality,

P[|Y − E[Y ]| ≥ E[Y ]] ≤ Var(Y )

(E[Y ])2
.

Therefore

P[Y ≥ 1] = 1− PY = 0 ≥ 1− Var(Y )

(E[Y ])2

Using pairwise independence of Yij ’s, we get

Var(Y ) =
∑
i<j

Var(Yij) =
∑
i<j

(
1

N
− 1

N2

)
≤
∑
i,j

1

N
≤
(
n
2

)
N
.
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Therefore,

P[Y ≥ 1] ≥ 1− Var(Y )

E [Y ]
2 ≥ 1−

(
n
2

)
/N

(
(
n
2

)
/N)2

= 1− N(
n
2

) ≈ 1− 2N

n2
.

So, for n ≥ C
√
N , there is a collision with probability at least 1− 2/C2.

2.3 Chernoff Bounds

Central Limit Theorems in their general form state for a sequence i.i.d. random variables X1, X2, . . . with
bounded mean µ and variance σ2,

√
n

(
1

n

n∑
i=1

Xi − µ

)
→ N(0, σ2)

Chernoff types bound provide a quantitative bound on this convergence. Recall that Chebyshev’s bound
imply that the probability that a R.V. X is at distance kσ from the mean is 1/k2. Roughly speaking, Chernoff
types of bounds imply that for a suitable R.V. X this probability is exp(Ω(k)). We start by describing the
Hoeffding’s bound.

Hoeffding’s Inequality: Let X1, ..., Xn be a sequence of independent variables where for each 1 ≤ i ≤ n,
ai ≤ Xi ≤ bi. Then,

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − E

[
1

n

n∑
i=1

Xi

]∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2n2ε2∑

(ai − bi)2

)
.

In the polling example we had Xi ∈ {0, 1} for each i, and X1, . . . , Xn are independent random variables with
E[Xi] = p. Therefore, by the Hoeffding’s inequality we get

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − p

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
−2n2ε2

n

)
= 2 exp(−2ε2n)

So, for any δ > 0, 1
n

∑n
i=1Xi is within additive error ε of p with probability at least 1− δ if

n ≥
log 1

δ

ε2
.

Application 4. Unbiased random walk on a line. Consider a particle which does an unbiased random
walk on the real line. It starts at zero and in each time step it moves one step ahead or one step back, i.e.,
from position i with probability 1/2 it goes to i+ 1 and with the remaining probability it goes to i− 1. We
want to see how far from the origin the particle will be at time n.

We can simulate this variable b a sequence X1, . . . , Xn of independent random variables where for each i,

Xi =

{
1 with probability1/2

−1 with probability1/2

Let X = X1 + X2 + · · · + Xn. We want to prove an upper bound on |X|. Since E[X] = 0, by Hoeffding
inequality,

P
[∣∣∣∣ 1nX − 0

∣∣∣∣ ≥ ε] ≤ 2 exp

(
−2n2ε2

4n

)
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so if ε =
√

log(n)/n, with probability at least 1− 1/n, we have
∣∣ 1
nX
∣∣ ≤√log(n)/n, or in other words, with

probability at least 1 − 1/n, |X| ≤
√
n log(n). That is, with high probability the particle is at distance√

n log(n) from the origin. In the next lecture, we show that the particle has distance at least
√
n from the

origin w.h.p..
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