
CSE 521: Design and Analysis of Algorithms I Spring 2016

Lecture 4: Universal Hash Functions/Streaming Cont’d
Lecturer: Shayan Oveis Gharan April 6th Scribe: Jacob Schreiber

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

4.1 Hash Functions

Suppose we want to maintain a data structure of a set of elements x1, . . . , xm of a universe U , e.g., images,
that can perform insertion/deletion/search operations. A simple strategy would be to have one bucket for
every possible image, i.e., each element of U , and indicate in each bucket whether or not the corresponding
image appeared. Unfortunately, |U| can be much much larger than the space available in our computers; for
example, if U represents the set of all possible images, |U| is as big as 21000000.

Instead, one may use a hash function. A hash function h : U → [B] maps elements of U to integers in [B].
For every element of the sequence we mark h(xi) with xi. When a query x arrives, we go to the cell h(x)
if no element is stored there, x is not in our sequence. Otherwise, we go over all elements stored in h(x)
and see if any of them is equal to x. Observe that the search operation thus depends on the number of
elements stored in h(x). Ideally, we would like to have a hash function that stores at most one element in
every 0 ≤ i ≤ B − 1. Fix a function h. Observe that h maps 1/B fraction of all elements of U to the same
number i ∈ [B]. Therefore, the search operation in the worst case is very slow.

We can mitigate this problem by choosing a hash function h uniformly at random the family of all functions
that map U to B; let H = h : U → [B], and let h ∼ H chosen uniformly at random. Now, if the length of
the sequence m � B, then, by the birthday paradox phenomenon, with high probability, no two elements
of the sequence map to the same cell. In other words, there is no collisions. However, observe that H has
|U|B many functions, so even describing h requires log |U|B = |U| logB bits of memory. Recall that we
assumed |U| � 21000000 so we cannot efficiently represent h. Instead, we are going to work with smaller
much families of functions say H∗; such a family can only guarantee weaker notions of independence, but
because |H∗| � |H|, it is much easier to describe a randomly chosen function from H∗.

4.2 2-Universal Functions

In this section, we describe a family hash functions that only preserve pairwise-independent. Let p be a
prime number, and let H = {h : [p] → [p], h(x) = ax + b mod p}. Observe that any function ha,b ∈ H can
be represented in O(log p) bits of memory just by recording the a, b ∈ [p]. Next, we show that a uniformly
random function h ∼ H is pairwise independent.

Lemma 4.1. For any x, y, c, d ∈ [p]x 6= y,P [h(x) = c, h(y) = d] = 1
p2

Proof. Suppose for some x 6= y,

h(x) ≡ c, and h(y) ≡ d.

Equivalently, we can write,

ax+ b ≡ c mod p, and ay + b ≡ d mod p.

4-1

4-2 Lecture 4: Universal Hash Functions/Streaming Cont’d

Using the laws of modular equations, we can write,

a(x− y) ≡ (c− b)− (d− b) mod p.

Since p is a prime, any number 1 ≤ z ≤ p−1 has a multiplicative inverse, i.e., there is a number 1 ≤ z−1 ≤ p−1
such that p · p−1 ≡ 1 mod p. Since x 6= y, x− y 6= 0. Therefore, it has a multiplicative inverse, and we can
write,

a = (x− y)−1(c− d) mod p,

which gives,
b = d− ay mod p.

In words, having x, y, c, d uniquely defines a, b. Since there are p2 possibilities for a, b, we get

P [h(x) = c, h(y) = d] = 1/p2.

For our applications in estimating F0, we first need to choose a prime number p > n. Then, we can use a
hash function h : [n] → [B] where for any 0 ≤ x ≤ n − 1, h(x) = ax + b mod p mod B. It is easy to see
that such a function is almost pairwise independent which is good enough for our application in estimating
F0.

We can extend the above construction to a family of k-wise independence hash functions. We say a hash
function h : [p]→ [p] is k-wise independent if for all distinct x0, . . . , xk−1,

P [∀i, h(xi) = ci] =
1

pk
.

Such a hash function h can be constructed by choosing a0, a1, . . . , ak−1 uniformly and independently from
[p] and letting

h(x) = ak−1x
k−1 + ak−2x

k−2...a1x+ a0.

We are not proving that this will give a k-wise independence hash function. Instead, we just give the
high-level idea. Let h be a 4-wise independent hash function and let x0, x1, x2, x3 ∈ [p] be distinct and
c0, c1, c2, c3 ∈ [p] we need to show that there is a unique set a0, a1, a2, a3 for which h(xi) = ci for all i. To
find a0, a1, a2, a3 it is enough to solve the following system of linear equautions.

x30 x20 x0 1
x31 x21 x1 1
x32 x22 x2 1
x33 x23 x3 1

a3
a2
a1
a0

 =

c0
c1
c2
c3

It turns out that the Matrix in the LHS has a nonzero determinant of x0, x1, x2, x3 are distinct. In such a
case, it is invertible, and we can use the inverse to uniquely define a0, a1, a2, a3.

4.3 F2 Moment

Before designing a streaming algorithm that estimates F2, let us revisit the random walk example that we
had a few lectures ago. Let X =

∑
i

Xi where for each i,

Xi =

{
+1, w.p. 1

2

−1, w.p. 1
2

Lecture 4: Universal Hash Functions/Streaming Cont’d 4-3

Using the Hoeffding bound, we previously showed that for any c > 2, P [X ≤ c
√
n] ≥ 1 − e

−c2
2 . Is this

bound tight? Can we show that X ≥ Ω(n) with a constant probability? The answer yes. More generally it
follows from the central limit theorem. But instead of using such a heavy tool there is a more elementary
argument that we can use. To show that X ≥ Ω(

√
n) with a constant probability, it is enough to show that

E
[
X2
]
≥ n.

E
[
X2
]

= E

[∑
i

Xi]
2

]
= E

∑
i,j

XiXj

=

∑
i,j

E [XiXj] =
∑
i

E
[
X2
i

]
= n,

where in the second to last equality we use that Xi, Xj are independent, so E [XiXj] 6= 0 only when i = j,
and in the last equality we use E

[
X2
i

]
is 1.

Now back to estimating F2. We want to use a similar idea. Let x1, x2, . . . , xm ∈ [n] be the input sequence.
For each i ∈ [n] let mi := #{xj = i}. Recall that

F2 :=

n∑
i=1

m2
i .

Let h : [n]→ {+1,−1} where for any i ∈ [n],

h(i) =

{
+1, 1

2

−1, 1
2 ,

chosen independently. Consider the following algorithm: Start with Y = 0. After reading each xi, let
Y = Y + h(xi). Return Y 2.

Before, analyzing the algorithm let us study two extreme cases. First assume that x1 = x2 = · · · = xm.
Then, Y = m, Y 2 = m2 as desired. Now, assume that x1, x2, dots, xm are mutually distinct, then the
distribution of Y is the same as a random walk of length m; so by the previous observation Y ≈

√
n and

Y 2 ≈ n as desired.

Lemma 4.2. Y 2 is an unbiased estimator of F2, i.e., E
[
Y 2
]

= F2.

Proof. First, observe that

Y =
∑
i

mih(i).

Therefore,

E
[
Y 2
]

= E

∑
i,j

mimjh(i)h(j)

 =
∑
i,j

mimjE [h(i)h(j)]

=
∑
i

m2
iE
[
h(i)2

]
=
∑
i

m2
i

where the second to last equality uses that h(i) is independent of h(j) for all i 6= j.

Now, all we need to do is to estimate the expectation of Y 2 within a 1± ε factor. By Chebyshev’s inequality
all we need to show is that Y 2 has a small variance.

4-4 Lecture 4: Universal Hash Functions/Streaming Cont’d

Lemma 4.3. Var(Y 2) ≤ 2E
[
Y 2
]2
.

Proof. First, we calculate E
[
Y 4
]
. The idea is similar to before, we just use the independence of h(i)’s.

E
[
Y 4
]

= E

∑
i,j,k,l

mimjmkmlh(i)h(j)h(k)h(l)

=

∑
i,j,k,l

mimjmkmlE [h(i)h(j)h(k)h(l)] =
∑
i

m4
iE
[
h(i)4

]
+ 6

∑
i<j

m2
im

2
jE
[
h(i)2h(j)2

]
To see the last equality, observe that for any 4-tuple, i, j, k, l, E [h(i)h(j)h(k)h(l)] is nonzero only if each
integer in [m] shows up an even number. In other words, there are only two cases where E [h(i)h(j)h(k)h(l)]
is nonzero: (i) when i = j = k = l, (ii) when two of these four numbers are equal and the other two are also
equal.

Since for each i, E
[
h(i)2

]
= E

[
h(i)4

]
= 1, we have

E
[
Y 4
]

=

n∑
i=1

m4
i + 6

∑
i<j

m2
im

2
j .

Now, using Lemma 4.2, we can write,

Var(Y 2) = E
[
Y 4
]
− E

[
Y 2
]2

= 4
∑
i<j

m2
im

2
j ≤ 2E

[
Y 2
]2

as desired.

Now, all we need to do is to use independent samples of Y 2 to reduce the variance. Suppose we take k
independent samples of Y 2 using k independently chosen hash functions h1, . . . , hk, i.e., we run the following
algorithm: Start with Y1 = Y2 = · · · = Yk = 0. After reading xi, let Yj = Yj + h(xi) for all 1 ≤ j ≤ k. Then,

Var(
1

k
(Y 2

1 + · · ·+ Y 2
k)) =

1

k
Var(Y 2).

Therefore, by the Chebyshev’s inequality, we can write,

P

[∣∣∣∣∣1k∑
i

Y 2
i − E

[
Y 2
]∣∣∣∣∣ ≥ εE [Y 2

]]
≤

Var(1
k

∑k
i=1 Y

2
i)

ε2E [Y 2]
2

=
1
k2E

[
Y 2
]2

ε2E [Y 2]
2 =

2ε2

k

So, k = 5
ε2 many samples is enough to approximate F2 within 1 + ε factor with probability at least 9

10 . Note
that in the above construction we assumed that h(.) assigns independent values to all integers in [n]. But, it
can be seen from the proof that we only used 4-wise independence. The only place that we used independence
was to show that E [h(i)h(j)h(k)h(l)] = 0 when i, j, k, l are mutually distinct. That is of course true even if
h(.) is just a 4-wise independent function. Taking that into account we can run the above algorithm with
space O(log(n)/ε2).

In addition, we can turn the above probabilistic guarantee into 1− δ probability using
log 1

δ

ε2 many samples.
We refrain from giving the details. For more detailed discussion we refer to [AMS96].

REFERENCES 4-5

References

[AMS96] N. Alon, Y. Matias, and M. Szegedy. “The space complexity of approximating the frequency
moments”. In: STOCw. ACM. 1996, pp. 20–29 (cit. on p. 4-4).

	Hash Functions
	2-Universal Functions
	F2 Moment

