Lecture 4: Universal Hash Functions/Streaming Cont'd

Lecturer: Shayan Oveis Gharan
April 6th
Scribe: Jacob Schreiber

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

4.1 Hash Functions

Suppose we want to maintain a data structure of a set of elements x_{1}, \ldots, x_{m} of a universe \mathcal{U}, e.g., images, that can perform insertion/deletion/search operations. A simple strategy would be to have one bucket for every possible image, i.e., each element of \mathcal{U}, and indicate in each bucket whether or not the corresponding image appeared. Unfortunately, $|\mathcal{U}|$ can be much much larger than the space available in our computers; for example, if \mathcal{U} represents the set of all possible images, $|\mathcal{U}|$ is as big as $2^{1000000}$.

Instead, one may use a hash function. A hash function $h: \mathcal{U} \rightarrow[B]$ maps elements of \mathcal{U} to integers in $[B]$. For every element of the sequence we mark $h\left(x_{i}\right)$ with x_{i}. When a query x arrives, we go to the cell $h(x)$ if no element is stored there, x is not in our sequence. Otherwise, we go over all elements stored in $h(x)$ and see if any of them is equal to x. Observe that the search operation thus depends on the number of elements stored in $h(x)$. Ideally, we would like to have a hash function that stores at most one element in every $0 \leq i \leq B-1$. Fix a function h. Observe that h maps $1 / B$ fraction of all elements of \mathcal{U} to the same number $i \in[B]$. Therefore, the search operation in the worst case is very slow.

We can mitigate this problem by choosing a hash function h uniformly at random the family of all functions that $\operatorname{map} \mathcal{U}$ to B; let $\mathcal{H}=h: \mathcal{U} \rightarrow[B]$, and let $h \sim \mathcal{H}$ chosen uniformly at random. Now, if the length of the sequence $m \ll B$, then, by the birthday paradox phenomenon, with high probability, no two elements of the sequence map to the same cell. In other words, there is no collisions. However, observe that \mathcal{H} has $|\mathcal{U}|^{B}$ many functions, so even describing h requires $\log |\mathcal{U}|^{B}=|\mathcal{U}| \log B$ bits of memory. Recall that we assumed $|\mathcal{U}| \gg 2^{1000000}$ so we cannot efficiently represent h. Instead, we are going to work with smaller much families of functions say \mathcal{H}^{*}; such a family can only guarantee weaker notions of independence, but because $\left|\mathcal{H}^{*}\right| \ll|\mathcal{H}|$, it is much easier to describe a randomly chosen function from \mathcal{H}^{*}.

4.2 2-Universal Functions

In this section, we describe a family hash functions that only preserve pairwise-independent. Let p be a prime number, and let $\mathcal{H}=\{h:[p] \rightarrow[p], h(x)=a x+b \bmod p\}$. Observe that any function $h_{a, b} \in \mathcal{H}$ can be represented in $O(\log p)$ bits of memory just by recording the $a, b \in[p]$. Next, we show that a uniformly random function $h \sim \mathcal{H}$ is pairwise independent.

Lemma 4.1. For any $x, y, c, d \in[p] x \neq y, \mathbb{P}[h(x)=c, h(y)=d]=\frac{1}{p^{2}}$

Proof. Suppose for some $x \neq y$,

$$
h(x) \equiv c, \text { and } h(y) \equiv d
$$

Equivalently, we can write,

$$
a x+b \equiv c \quad \bmod p, \text { and } a y+b \equiv d \quad \bmod p
$$

Using the laws of modular equations, we can write,

$$
a(x-y) \equiv(c-b)-(d-b) \quad \bmod p
$$

Since p is a prime, any number $1 \leq z \leq p-1$ has a multiplicative inverse, i.e., there is a number $1 \leq z^{-1} \leq p-1$ such that $p \cdot p^{-1} \equiv 1 \bmod p$. Since $x \neq y, x-y \neq 0$. Therefore, it has a multiplicative inverse, and we can write,

$$
a=(x-y)^{-1}(c-d) \quad \bmod p
$$

which gives,

$$
b=d-a y \quad \bmod p
$$

In words, having x, y, c, d uniquely defines a, b. Since there are p^{2} possibilities for a, b, we get

$$
\mathbb{P}[h(x)=c, h(y)=d]=1 / p^{2} .
$$

For our applications in estimating F_{0}, we first need to choose a prime number $p>n$. Then, we can use a hash function $h:[n] \rightarrow[B]$ where for any $0 \leq x \leq n-1, h(x)=a x+b \bmod p \bmod B$. It is easy to see that such a function is almost pairwise independent which is good enough for our application in estimating F_{0}.

We can extend the above construction to a family of k-wise independence hash functions. We say a hash function $h:[p] \rightarrow[p]$ is k-wise independent if for all distinct x_{0}, \ldots, x_{k-1},

$$
\mathbb{P}\left[\forall i, h\left(x_{i}\right)=c_{i}\right]=\frac{1}{p^{k}} .
$$

Such a hash function h can be constructed by choosing $a_{0}, a_{1}, \ldots, a_{k-1}$ uniformly and independently from $[p]$ and letting

$$
h(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2} \ldots a_{1} x+a_{0} .
$$

We are not proving that this will give a k-wise independence hash function. Instead, we just give the high-level idea. Let h be a 4 -wise independent hash function and let $x_{0}, x_{1}, x_{2}, x_{3} \in[p]$ be distinct and $c_{0}, c_{1}, c_{2}, c_{3} \in[p]$ we need to show that there is a unique set $a_{0}, a_{1}, a_{2}, a_{3}$ for which $h\left(x_{i}\right)=c_{i}$ for all i. To find $a_{0}, a_{1}, a_{2}, a_{3}$ it is enough to solve the following system of linear equautions.

$$
\left[\begin{array}{cccc}
x_{0}^{3} & x_{0}^{2} & x_{0} & 1 \\
x_{1}^{3} & x_{1}^{2} & x_{1} & 1 \\
x_{2}^{3} & x_{2}^{2} & x_{2} & 1 \\
x_{3}^{3} & x_{3}^{2} & x_{3} & 1
\end{array}\right]\left(\begin{array}{l}
a_{3} \\
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

It turns out that the Matrix in the LHS has a nonzero determinant of $x_{0}, x_{1}, x_{2}, x_{3}$ are distinct. In such a case, it is invertible, and we can use the inverse to uniquely define $a_{0}, a_{1}, a_{2}, a_{3}$.

4.3 $\quad F_{2}$ Moment

Before designing a streaming algorithm that estimates F_{2}, let us revisit the random walk example that we had a few lectures ago. Let $X=\sum_{i} X_{i}$ where for each i,

$$
X_{i}=\left\{\begin{array}{ll}
+1, & \text { w.p. } \frac{1}{2} \\
-1, & \text { w.p. }
\end{array} \frac{1}{2}\right.
$$

Using the Hoeffding bound, we previously showed that for any $c>2, \mathbb{P}[X \leq c \sqrt{n}] \geq 1-e^{\frac{-c^{2}}{2}}$. Is this bound tight? Can we show that $X \geq \Omega(n)$ with a constant probability? The answer yes. More generally it follows from the central limit theorem. But instead of using such a heavy tool there is a more elementary argument that we can use. To show that $X \geq \Omega(\sqrt{n})$ with a constant probability, it is enough to show that $\mathbb{E}\left[X^{2}\right] \geq n$.

$$
\begin{aligned}
\left.\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\sum_{i} X_{i}\right]^{2}\right] & =\mathbb{E}\left[\sum_{i, j} X_{i} X_{j}\right] \\
& =\sum_{i, j} \mathbb{E}\left[X_{i} X_{j}\right]=\sum_{i} \mathbb{E}\left[X_{i}^{2}\right]=n
\end{aligned}
$$

where in the second to last equality we use that X_{i}, X_{j} are independent, so $\mathbb{E}\left[X_{i} X_{j}\right] \neq 0$ only when $i=j$, and in the last equality we use $\mathbb{E}\left[X_{i}^{2}\right]$ is 1 .

Now back to estimating F_{2}. We want to use a similar idea. Let $x_{1}, x_{2}, \ldots, x_{m} \in[n]$ be the input sequence. For each $i \in[n]$ let $m_{i}:=\#\left\{x_{j}=i\right\}$. Recall that

$$
F_{2}:=\sum_{i=1}^{n} m_{i}^{2}
$$

Let $h:[n] \rightarrow\{+1,-1\}$ where for any $i \in[n]$,

$$
h(i)= \begin{cases}+1, & \frac{1}{2} \\ -1, & \frac{1}{2},\end{cases}
$$

chosen independently. Consider the following algorithm: Start with $Y=0$. After reading each x_{i}, let $Y=Y+h\left(x_{i}\right)$. Return Y^{2}.

Before, analyzing the algorithm let us study two extreme cases. First assume that $x_{1}=x_{2}=\cdots=x_{m}$. Then, $Y=m, Y^{2}=m^{2}$ as desired. Now, assume that x_{1}, x_{2}, dots, x_{m} are mutually distinct, then the distribution of Y is the same as a random walk of length m ; so by the previous observation $Y \approx \sqrt{n}$ and $Y^{2} \approx n$ as desired.

Lemma 4.2. Y^{2} is an unbiased estimator of F_{2}, i.e., $\mathbb{E}\left[Y^{2}\right]=F_{2}$.

Proof. First, observe that

$$
Y=\sum_{i} m_{i} h(i)
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[\sum_{i, j} m_{i} m_{j} h(i) h(j)\right] & =\sum_{i, j} m_{i} m_{j} \mathbb{E}[h(i) h(j)] \\
& =\sum_{i} m_{i}^{2} \mathbb{E}\left[h(i)^{2}\right]=\sum_{i} m_{i}^{2}
\end{aligned}
$$

where the second to last equality uses that $h(i)$ is independent of $h(j)$ for all $i \neq j$.
Now, all we need to do is to estimate the expectation of Y^{2} within a $1 \pm \epsilon$ factor. By Chebyshev's inequality all we need to show is that Y^{2} has a small variance.

Lemma 4.3. $\operatorname{Var}\left(Y^{2}\right) \leq 2 \mathbb{E}\left[Y^{2}\right]^{2}$.
Proof. First, we calculate $\mathbb{E}\left[Y^{4}\right]$. The idea is similar to before, we just use the independence of $h(i)$'s.

$$
\begin{aligned}
\mathbb{E}\left[Y^{4}\right] & =\mathbb{E}\left[\sum_{i, j, k, l} m_{i} m_{j} m_{k} m_{l} h(i) h(j) h(k) h(l)\right] \\
& =\sum_{i, j, k, l} m_{i} m_{j} m_{k} m_{l} \mathbb{E}[h(i) h(j) h(k) h(l)]=\sum_{i} m_{i}^{4} \mathbb{E}\left[h(i)^{4}\right]+6 \sum_{i<j} m_{i}^{2} m_{j}^{2} \mathbb{E}\left[h(i)^{2} h(j)^{2}\right]
\end{aligned}
$$

To see the last equality, observe that for any 4 -tuple, $i, j, k, l, \mathbb{E}[h(i) h(j) h(k) h(l)]$ is nonzero only if each integer in $[m]$ shows up an even number. In other words, there are only two cases where $\mathbb{E}[h(i) h(j) h(k) h(l)]$ is nonzero: (i) when $i=j=k=l$, (ii) when two of these four numbers are equal and the other two are also equal.

Since for each $i, \mathbb{E}\left[h(i)^{2}\right]=\mathbb{E}\left[h(i)^{4}\right]=1$, we have

$$
\mathbb{E}\left[Y^{4}\right]=\sum_{i=1}^{n} m_{i}^{4}+6 \sum_{i<j} m_{i}^{2} m_{j}^{2}
$$

Now, using Lemma 4.2, we can write,

$$
\operatorname{Var}\left(Y^{2}\right)=\mathbb{E}\left[Y^{4}\right]-\mathbb{E}\left[Y^{2}\right]^{2}=4 \sum_{i<j} m_{i}^{2} m_{j}^{2} \leq 2 \mathbb{E}\left[Y^{2}\right]^{2}
$$

as desired.

Now, all we need to do is to use independent samples of Y^{2} to reduce the variance. Suppose we take k independent samples of Y^{2} using k independently chosen hash functions h_{1}, \ldots, h_{k}, i.e., we run the following algorithm: Start with $Y_{1}=Y_{2}=\cdots=Y_{k}=0$. After reading x_{i}, let $Y_{j}=Y_{j}+h\left(x_{i}\right)$ for all $1 \leq j \leq k$. Then,

$$
\operatorname{Var}\left(\frac{1}{k}\left(Y_{1}^{2}+\cdots+Y_{k}^{2}\right)\right)=\frac{1}{k} \operatorname{Var}\left(Y^{2}\right)
$$

Therefore, by the Chebyshev's inequality, we can write,

$$
\begin{aligned}
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} Y_{i}^{2}-\mathbb{E}\left[Y^{2}\right]\right| \geq \epsilon \mathbb{E}\left[Y^{2}\right]\right] & \leq \frac{\operatorname{Var}\left(\frac{1}{k} \sum_{i=1}^{k} Y_{i}^{2}\right)}{\epsilon^{2} \mathbb{E}\left[Y^{2}\right]^{2}} \\
& =\frac{\frac{1}{k} 2 \mathbb{E}\left[Y^{2}\right]^{2}}{\epsilon^{2} \mathbb{E}\left[Y^{2}\right]^{2}}=\frac{2 \epsilon^{2}}{k}
\end{aligned}
$$

So, $k=\frac{5}{\epsilon^{2}}$ many samples is enough to approximate F_{2} within $1+\epsilon$ factor with probability at least $\frac{9}{10}$. Note that in the above construction we assumed that $h($.$) assigns independent values to all integers in [n$]. But, it can be seen from the proof that we only used 4 -wise independence. The only place that we used independence was to show that $\mathbb{E}[h(i) h(j) h(k) h(l)]=0$ when i, j, k, l are mutually distinct. That is of course true even if $h($.$) is just a 4$-wise independent function. Taking that into account we can run the above algorithm with space $O\left(\log (n) / \epsilon^{2}\right)$.

In addition, we can turn the above probabilistic guarantee into $1-\delta$ probability using $\frac{\log \frac{1}{\delta}}{\epsilon^{2}}$ many samples. We refrain from giving the details. For more detailed discussion we refer to [AMS96].

References

[AMS96] N. Alon, Y. Matias, and M. Szegedy. "The space complexity of approximating the frequency moments". In: STOCw. ACM. 1996, pp. 20-29 (cit. on p. 4-4).

