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8.1 Introduction

Let M ∈ Rn×n be a symmetric matrix. We say λ is an eigenvalue of M with eigenvector v, if

Mv = λv.

Theorem 8.1. If M is symmetric, then all its eigenvalues are real.

Proof. Suppose

Mv = λv.

We want to show that λ has imaginary value 0. For a complex number x = a + ib, the conjugate of x, is
defined as follows: x∗ = a − ib. So, all we need to show is that λ = λ∗. The conjugate of a vector is the
conjugate of all of its coordinate.

Taking the conjugate transpose of both sides of the above equality, we have

v∗M = λ∗v∗, (8.1)

where we used that MT = M .

So, on one hand,

v∗Mv = v∗(Mv) = v∗(λv) = λ(v∗v).

and on the other hand, by (8.1)

v∗Mv = λ∗v∗v.

So, we must have λ = λ∗.

8.2 Characteristic Polynomial

If M does not have 0 as one of its eigenvalues, then det(M) 6= 0. An equivalent statement is that, if M all
columns of M are linearly independent, then det(M) 6= 0.

If λ is an eigenvalue of M , then Mv = λv, so (M − λI)v = 0. In other words, M − λI has a zero eigenvalue
and det(M − λI) = 0.

Definition 8.2. Characteristic polynomial of a matrix M is given by det(xI −M), which is a polynomial
of degree n in the variable x.
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By the above argument any eigenvalue of M is a root of det(xI −M). Since any degree n polynomial has n
roots, M must have exactly n eigenvalues. Furthermore, since the coefficient of xn in det(xI −M) is 1, we
can write,

det(xI −M) = (x− λ1)(x− λ2) . . . (x− λn),

where λ1, λ2, . . . λn, are the eigenvalues of M .

Let us give an example to better understand the characteristic polynomial. Let

M =

[
1 2
2 1

]
.

Then,

det (xI −M) = det

[
x− 1 −2
x− 1 −2

]
= (x− 1)2 − (−2)(−2) = (x− 3)(x+ 1).

So, by the above theory, 3,−1 must be the eigenvalues of M . Indeed these are the eigenvalues with the
following eigenvectors, [

1 2
2 1

](
1
1

)
= 3 ·

(
1
1

)
and

[
1 2
2 1

](
1
−1

)
= −1 ·

(
1
−1

)
.

The following corollary immediately follows from the above discussion.

Corollary 8.3. For any matrix M , det(M) =
n∏
i=1

λi

To prove the above corollary it is enough to let x = 0 in the characteristic polynomial. Then,

det(0I −M) = det(−M) = (−1)n det(M) = (−1)n
n∏
i=1

λi.

8.3 Spectral Theorem

For two vectors u, v we use

〈u, v〉 :=
∑
i

u(i)v(i).

We say u is orthogonal to v, u ⊥ v, if 〈u, v〉 = 0. We say a family of vectors {v1, . . . , vn} are orthonormal if
for all i 6= j, vi, vj are orthogonal and each vi has norm 1.

Theorem 8.4. For any symmetric matrix M ∈ Rn×n, ∃λ1, λ2, . . . λn ∈ R with corresponding orthonormal
eigenvectors v1, v2, . . . vn. Furthermore, M can be written as follows:

M :=
∑
i

λiviv
T
i .

Note that for any vector v, vvT is an n× n matrix where for all i, j, (vvT )i,j = v(i)v(j).

If λ is an eigenvalue of M with eigenvector v, then λk is an eigenvalue of Mk. This is because

Mkv = Mk−1λv = Mk−2λ2v = λkv.
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In addition observe that the same vector v is an eigenvector of λk. Consequently, by the spectral theorem
we can write,

Mk =
∑
i

λki viv
T
i .

We can also use spectral theorem to write any functions of the matrix M . For example, we can write
M−1 =

∑n
i=1

1
λi
viv

T
i .

Claim 8.5. Let M−1 be as defined above. Then,

M−1M = I.

Proof. By the above definition,

M−1M =

(
n∑
i=1

1

λi
viv

T
i

)(
n∑
i=1

λiviv
T
i

)

=
∑
i,j

λi
λj

(viv
T
i )(vjv

T
j )

=
∑
i,j

λi
λj
vi(v

T
i vj)v

T
j )

=
∑
i

1.vi(v
T
i vi︸︷︷︸
1

)vTi ) =
∑
i

viv
T
i = I.

In the fourth equality we used that for all i 6= j, vi, vj are orthogonal, and in the fifth equality we used that
each vi has norm 1. It is a nice exercise to prove the last equality.

8.4 Trace

The Trace of a symmetric matrix M is defined as follows:

Tr(M) =
∑ n∑

i=1

Mi,i.

Theorem 8.6. For any symmetric matrix M , with eigenvalues λ1, . . . , λn, we have Tr(M) =
∑
i

λi.

Proof. As usual, let e1, e2, . . . en be the standard basis vectors, i.e., for all i,

ei(j) =

{
1, if i = j

0, otherwise.

Let v1, . . . , vn be the eigenvectors corresponding to λ1, . . . , λn. Then,

Tr(M) =
∑
i

eTi Mei

=
∑
i

eTi

∑
j

λjvjv
T
j

 ei

=
∑
i

∑
j

λi〈ei, vj〉2 =
∑
j

λj‖vj‖2 =
∑
i

λi.
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In the second to last equality we used that

n∑
i=1

〈ei, vj〉2 =

n∑
i=1

vj(i)
2 = ‖vj‖2.

8.5 Rayleigh Quotient

So, far we defined eigenvectors as the solution of a system of linear equations, that is for eigenvalue λ, v is
the solution to (M −λI)v = 0. The Rayleigh Quotient, a.k.a., variational characterization of the eigenvalues
allows us to write eigenvalues (and eigenvectors) as the solution to an optimization problem. Using this
characterization one also define and study approximate eigenvectors of a matrix.

Theorem 8.7. Let M ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≤ λ2 . . . ≤ λn. Then

λ1 = min
‖x‖=1

xTMx, (8.2)

furthermore, the minimizer is the eigenvector v1 corresponding to λ1. We also have

λ2 = min
x:x⊥v1,
‖x‖=1

xTMx.

In general, for any k ≥ 1 we can write,

λk = min
dim(S)=k

max
x∈S
‖x‖=1

xTMx,

where the minimum is over all linear spaces S of dimension k.

Note that xTMx in the above theorem is also known as the quadratic form. It is a basic mathematical object
in studying the matrices.

Proof. Here we prove (8.2). The rest of the equations can be proven by similar ideas. Let v1, . . . , vn be the
eigenvectors corresponding to λ1, . . . , λn. First, observe that for x = v1 we have

vT1 Mv1 = vT1 λ1v1 = λ1‖v1‖2 = λ1.

So, it remains to show that for any unit vector x, xTMx ≥ λ1.

xTMx =
∑

λix
T viv

T
i x

=
∑

λi〈x, vi〉2

≥
∑

λ1〈x, vi〉2

= λ1‖x‖2 = λ1

The inequality uses the fact that λ1 is the smallest eigenvalue of M and that for any i, 〈x, vi〉2 ≥ 0. The
second to last equality uses the fact that v1, . . . , vn form an orthonormal basis of Rn. We can write any
vector x in this bases as x =

∑n
i=1〈x, vi〉vi. For such a representation ‖x‖2 is nothing but

∑
i〈vi, x〉2.
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8.6 Positive Semidefinite Matrices

Definition 8.8. We say a symmetric matrix M ∈ Rn×n is positive semi-definite (denoted as M � 0) iff
0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

Equivalently, a symmetric matrix M ∈ Rn×n is positive semi-definite iff xTMx ≥ 0∀x 6= 0. The equivalence
simply follows from the Rayleigh quotient. Note that the smallest eigenvalue of M is minxTMx over all
unit vectors x. So, if xTMx ≥ 0 for all x, the smallest eigenvalue of M is nonnegative. Conversely, if the
smallest eigenvalue of M is nonnegative, xTMx ≥ 0 for all vectors x.

Similarly, we can define a negative semi-definite matrix denoted by M � 0 as a matrix where all eigenvalues
are nonpositive, λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 0.

Using the above definition we define square root for PSD matrices. For a PSD matrix M ,

√
M =

∑
i

√
λiviv

T
i .

It is an exercise to show that
√
M ·
√
M = M .

8.7 Singular Value Decomposition

Non-symmetric square matrices still have n eigenvalues which are not necessarily real. This again follows from
the fact that the characteristic polynomial has n roots. But unfortunately, the corresponding eigenvectors
are not necessarily orthogonal. For a concrete example observe that the following matrix has eigenvalues 0, 3
and the corresponding eigenvectors are not orthogonal.[

1 2
1 2

](
1
1

)
= 3 ·

(
1
1

)
and

[
1 2
1 2

](
2
−1

)
= 0.

However, we can define a singular value decomposition for nonsymmetric matrices. This is known as the
singular value decomposition (SVD) and we will talk about in the next lecture.
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