CSE 521: Design and Analysis of Algorithms I
 Spring 2016
 Lecture 8: Eigenvalues, Eigenvectors and Spectral Theorem
 Lecturer: Shayan Oveis Gharan
 April 20th
 Scribe: Sudipto Mukherjee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

8.1 Introduction

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. We say λ is an eigenvalue of M with eigenvector v, if

$$
M v=\lambda v
$$

Theorem 8.1. If M is symmetric, then all its eigenvalues are real.

Proof. Suppose

$$
M v=\lambda v
$$

We want to show that λ has imaginary value 0 . For a complex number $x=a+i b$, the conjugate of x, is defined as follows: $x^{*}=a-i b$. So, all we need to show is that $\lambda=\lambda^{*}$. The conjugate of a vector is the conjugate of all of its coordinate.

Taking the conjugate transpose of both sides of the above equality, we have

$$
\begin{equation*}
v^{*} M=\lambda^{*} v^{*} \tag{8.1}
\end{equation*}
$$

where we used that $M^{T}=M$.
So, on one hand,

$$
v^{*} M v=v^{*}(M v)=v^{*}(\lambda v)=\lambda\left(v^{*} v\right)
$$

and on the other hand, by (8.1)

$$
v^{*} M v=\lambda^{*} v^{*} v
$$

So, we must have $\lambda=\lambda^{*}$.

8.2 Characteristic Polynomial

If M does not have 0 as one of its eigenvalues, then $\operatorname{det}(M) \neq 0$. An equivalent statement is that, if M all columns of M are linearly independent, then $\operatorname{det}(M) \neq 0$.
If λ is an eigenvalue of M, then $M v=\lambda v$, so $(M-\lambda I) v=0$. In other words, $M-\lambda I$ has a zero eigenvalue and $\operatorname{det}(M-\lambda I)=0$.

Definition 8.2. Characteristic polynomial of a matrix M is given by $\operatorname{det}(x I-M)$, which is a polynomial of degree n in the variable x.

By the above argument any eigenvalue of M is a root of $\operatorname{det}(x I-M)$. Since any degree n polynomial has n roots, M must have exactly n eigenvalues. Furthermore, since the coefficient of x^{n} in $\operatorname{det}(x I-M)$ is 1 , we can write,

$$
\operatorname{det}(x I-M)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)
$$

where $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$, are the eigenvalues of M.
Let us give an example to better understand the characteristic polynomial. Let

$$
M=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

Then,

$$
\operatorname{det}(x I-M)=\operatorname{det}\left[\begin{array}{ll}
x-1 & -2 \\
x-1 & -2
\end{array}\right]=(x-1)^{2}-(-2)(-2)=(x-3)(x+1)
$$

So, by the above theory, $3,-1$ must be the eigenvalues of M. Indeed these are the eigenvalues with the following eigenvectors,

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\binom{1}{1}=3 \cdot\binom{1}{1} \text { and }\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\binom{1}{-1}=-1 \cdot\binom{1}{-1} .
$$

The following corollary immediately follows from the above discussion.
Corollary 8.3. For any matrix $M, \operatorname{det}(M)=\prod_{i=1}^{n} \lambda_{i}$

To prove the above corollary it is enough to let $x=0$ in the characteristic polynomial. Then,

$$
\operatorname{det}(0 I-M)=\operatorname{det}(-M)=(-1)^{n} \operatorname{det}(M)=(-1)^{n} \prod_{i=1}^{n} \lambda_{i}
$$

8.3 Spectral Theorem

For two vectors u, v we use

$$
\langle u, v\rangle:=\sum_{i} u(i) v(i) .
$$

We say u is orthogonal to $v, u \perp v$, if $\langle u, v\rangle=0$. We say a family of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ are orthonormal if for all $i \neq j, v_{i}, v_{j}$ are orthogonal and each v_{i} has norm 1 .

Theorem 8.4. For any symmetric matrix $M \in \mathbb{R}^{n \times n}, \exists \lambda_{1}, \lambda_{2}, \ldots \lambda_{n} \in \mathbb{R}$ with corresponding orthonormal eigenvectors $v_{1}, v_{2}, \ldots v_{n}$. Furthermore, M can be written as follows:

$$
M:=\sum_{i} \lambda_{i} v_{i} v_{i}^{T}
$$

Note that for any vector $v, v v^{T}$ is an $n \times n$ matrix where for all $i, j,\left(v v^{T}\right)_{i, j}=v(i) v(j)$.
If λ is an eigenvalue of M with eigenvector v, then λ^{k} is an eigenvalue of M^{k}. This is because

$$
M^{k} v=M^{k-1} \lambda v=M^{k-2} \lambda^{2} v=\lambda^{k} v
$$

In addition observe that the same vector v is an eigenvector of λ^{k}. Consequently, by the spectral theorem we can write,

$$
M^{k}=\sum_{i} \lambda_{i}^{k} v_{i} v_{i}^{T}
$$

We can also use spectral theorem to write any functions of the matrix M. For example, we can write $M^{-1}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}} v_{i} v_{i}^{T}$.
Claim 8.5. Let M^{-1} be as defined above. Then,

$$
M^{-1} M=I
$$

Proof. By the above definition,

$$
\begin{aligned}
M^{-1} M & =\left(\sum_{i=1}^{n} \frac{1}{\lambda_{i}} v_{i} v_{i}^{T}\right)\left(\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}\right) \\
& =\sum_{i, j} \frac{\lambda_{i}}{\lambda_{j}}\left(v_{i} v_{i}^{T}\right)\left(v_{j} v_{j}^{T}\right) \\
& \left.=\sum_{i, j} \frac{\lambda_{i}}{\lambda_{j}} v_{i}\left(v_{i}^{T} v_{j}\right) v_{j}^{T}\right) \\
& =\sum_{i} 1 \cdot v_{i}(\underbrace{v_{i}^{T} v_{i}}_{1}) v_{i}^{T})=\sum_{i} v_{i} v_{i}^{T}=I
\end{aligned}
$$

In the fourth equality we used that for all $i \neq j, v_{i}, v_{j}$ are orthogonal, and in the fifth equality we used that each v_{i} has norm 1. It is a nice exercise to prove the last equality.

8.4 Trace

The Trace of a symmetric matrix M is defined as follows:

$$
\operatorname{Tr}(M)=\sum \sum_{i=1}^{n} M_{i, i}
$$

Theorem 8.6. For any symmetric matrix M, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, we have $\operatorname{Tr}(M)=\sum_{i} \lambda_{i}$.
Proof. As usual, let $e_{1}, e_{2}, \ldots e_{n}$ be the standard basis vectors, i.e., for all i,

$$
e_{i}(j)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Let v_{1}, \ldots, v_{n} be the eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{n}$. Then,

$$
\begin{aligned}
\operatorname{Tr}(M) & =\sum_{i} e_{i}^{T} M e_{i} \\
& =\sum_{i} e_{i}^{T}\left(\sum_{j} \lambda_{j} v_{j} v_{j}^{T}\right) e_{i} \\
& =\sum_{i} \sum_{j} \lambda_{i}\left\langle e_{i}, v_{j}\right\rangle^{2}=\sum_{j} \lambda_{j}\left\|v_{j}\right\|^{2}=\sum_{i} \lambda_{i}
\end{aligned}
$$

In the second to last equality we used that

$$
\sum_{i=1}^{n}\left\langle e_{i}, v_{j}\right\rangle^{2}=\sum_{i=1}^{n} v_{j}(i)^{2}=\left\|v_{j}\right\|^{2}
$$

8.5 Rayleigh Quotient

So, far we defined eigenvectors as the solution of a system of linear equations, that is for eigenvalue λ, v is the solution to $(M-\lambda I) v=0$. The Rayleigh Quotient, a.k.a., variational characterization of the eigenvalues allows us to write eigenvalues (and eigenvectors) as the solution to an optimization problem. Using this characterization one also define and study approximate eigenvectors of a matrix.

Theorem 8.7. Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \ldots \leq \lambda_{n}$. Then

$$
\begin{equation*}
\lambda_{1}=\min _{\|x\|=1} x^{T} M x \tag{8.2}
\end{equation*}
$$

furthermore, the minimizer is the eigenvector v_{1} corresponding to λ_{1}. We also have

$$
\lambda_{2}=\min _{\substack{x: x \perp v_{1},\|x\|=1}} x^{T} M x
$$

In general, for any $k \geq 1$ we can write,

$$
\lambda_{k}=\min _{\operatorname{dim}(S)=k} \max _{\substack{x \in S \\\|x\|=1}} x^{T} M x
$$

where the minimum is over all linear spaces S of dimension k.

Note that $x^{T} M x$ in the above theorem is also known as the quadratic form. It is a basic mathematical object in studying the matrices.

Proof. Here we prove (8.2). The rest of the equations can be proven by similar ideas. Let v_{1}, \ldots, v_{n} be the eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{n}$. First, observe that for $x=v_{1}$ we have

$$
v_{1}^{T} M v_{1}=v_{1}^{T} \lambda_{1} v_{1}=\lambda_{1}\left\|v_{1}\right\|^{2}=\lambda_{1} .
$$

So, it remains to show that for any unit vector $x, x^{T} M x \geq \lambda_{1}$.

$$
\begin{aligned}
x^{T} M x & =\sum \lambda_{i} x^{T} v_{i} v_{i}^{T} x \\
& =\sum \lambda_{i}\left\langle x, v_{i}\right\rangle^{2} \\
& \geq \sum \lambda_{1}\left\langle x, v_{i}\right\rangle^{2} \\
& =\lambda_{1}\|x\|^{2}=\lambda_{1}
\end{aligned}
$$

The inequality uses the fact that λ_{1} is the smallest eigenvalue of M and that for any $i,\left\langle x, v_{i}\right\rangle^{2} \geq 0$. The second to last equality uses the fact that v_{1}, \ldots, v_{n} form an orthonormal basis of \mathbb{R}^{n}. We can write any vector x in this bases as $x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i}$. For such a representation $\|x\|^{2}$ is nothing but $\sum_{i}\left\langle v_{i}, x\right\rangle^{2}$.

8.6 Positive Semidefinite Matrices

Definition 8.8. We say a symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semi-definite (denoted as $M \succeq 0$) iff $0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.

Equivalently, a symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semi-definite iff $x^{T} M x \geq 0 \forall x \neq 0$. The equivalence simply follows from the Rayleigh quotient. Note that the smallest eigenvalue of M is $\min x^{T} M x$ over all unit vectors x. So, if $x^{T} M x \geq 0$ for all x, the smallest eigenvalue of M is nonnegative. Conversely, if the smallest eigenvalue of M is nonnegative, $x^{T} M x \geq 0$ for all vectors x.

Similarly, we can define a negative semi-definite matrix denoted by $M \preceq 0$ as a matrix where all eigenvalues are nonpositive, $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \leq 0$.

Using the above definition we define square root for PSD matrices. For a PSD matrix M,

$$
\sqrt{M}=\sum_{i} \sqrt{\lambda_{i}} v_{i} v_{i}^{T}
$$

It is an exercise to show that $\sqrt{M} \cdot \sqrt{M}=M$.

8.7 Singular Value Decomposition

Non-symmetric square matrices still have n eigenvalues which are not necessarily real. This again follows from the fact that the characteristic polynomial has n roots. But unfortunately, the corresponding eigenvectors are not necessarily orthogonal. For a concrete example observe that the following matrix has eigenvalues 0,3 and the corresponding eigenvectors are not orthogonal.

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\binom{1}{1}=3 \cdot\binom{1}{1} \text { and }\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\binom{2}{-1}=0
$$

However, we can define a singular value decomposition for nonsymmetric matrices. This is known as the singular value decomposition (SVD) and we will talk about in the next lecture.

