
CSE 521: Design and Analysis of Algorithms I Winter 2017

Lecture 1: Contraction Algorithm
Lecturer: Shayan Oveis Gharan 1-3-2017 Scribe: Parmita Mehta

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Introduction to Randomized Algorithms

Deterministic algorithms take input and produce output. In Randomized Algorithms, in addition to input
algorithms take a source of random bits and makes random choices during execution - which leads behavior
to vary even on a fixed input. For many problems a randomized algorithm is the simplest or fastest or both.

Let p > 0 be the probability that a (randomized) algorithm generates the correct (optimal) solution. It
turns out that, even if p is much smaller than 1 we can obtain an algorithm with that succeeds with high
probability just by executing the original algorithm independently many times. In particular, if we run the
original algorithm k times, the probability that at least one copy succeeds is at least 1 − (1 − p)k. For
small values of p one can always approximate 1 − p with e−p, and during this course we always use such
an approximation. It follows that for k = 100/p, at least one copy finds the correct (optimal) solution with
probability at least

1− e−pk = 1− e−100.

In other words, even if we have an algorithm with a small probability of success we can boost the success
probability to a number very close to 1.

In this lecture, we describe a randomized algorithm for the minimum cut problem. Let us start with the
definition of minimum cut problem. Let G = (V,E) be a graph with n = |V | vertices. Let

E(S, S) := {(u, v) : u ∈ S, v /∈ S},

be the set of edges that have exactly one endpoint in S. In the minimum cut problem, we want to partition
the into two subsets which are joined together with minimum number of edges, i.e.,

min
∅⊂S⊂V

|E(S, S)|.

1.2 Karger’s Algorithm

In this lecture we will discuss Karger’s [Kar93] and Karger-Stein’s [KS93] algorithm for the minimum cut
problem. We will show that the former finds the minimum cut in time O(n4) and the latter finds it in time
O(n2) with high probability.

Before describing these algorithms, let us define a contraction procedure. Contraction of an edge (u, v) in
G, merges the endpoints u and v to create a new (super) node uv. This reduces the total number of nodes
in the graph by 1. All other edges which were previously attached to u or v are attached to the new (super)
node uv. Note that this might lead to multiple parallel edges; in particular, if a node z has a edges to u and
b edges to v, after contraction it will have a + b edges to uv.

1-1

1-2 Lecture 1: Contraction Algorithm

When we contract u, v we just remove the edge connecting u to v from the graph; in other words, we do not
include the loops.

Let k be the size of the minimum cut of G; fix a minimum cut (S∗, S∗). In this section we design an algorithm
that finds (S∗, S∗) with probability at least 1/

(
n
2

)
.

Let us start by describing the main idea. Suppose we choose a uniformly random edge e in G. What is the
probability that e ∈ E(S∗, S∗)?

Claim 1.1. The probability that a uniformly random edge is in E(S∗, S∗) is at most 2/n.

Proof. Let e be a uniformly random edge in G. Obviously,

P
[
e ∈ E(S∗, S∗)

]
=
|E(S∗, S∗)|
|E|

=
k

|E|
.

To give an upper bound we need to lower bound |E|. Here we use the hand-shake lemma. Let d(v) be the
degree of a vertex v. The hand-shake lemma says that in any graph G,∑

v∈V
d(v) = 2|E|.

This is because in the LHS we count each edge twice. Now, we can lower bound d(v) for any vertex v by k.
This is because, for any v,

d(v) = |E({v}, {v})| ≥ k.

In other words, the size of the cut separating v from the rest of the graph is at least k. It follows from the
above two equations that |E| ≥ nk/2. So,

P
[
e ∈ E(S∗, S∗)

]
=

k

|E|
≥ k

nk/2
=

2

n
.

Using the above lemma if we choose n/4 edges of G uniformly at random with probability 1/2 none of is in
the min-cut (S∗, S∗). Now, we can contract these n/4 edges. The new graph will have at most 3n/4 vertices
and we can recurse. After O(log n) steps, we get to a graph with just two super nodes. With probability at
least (1/2)O(logn) we do not contract any of the edges of (S∗, S∗) throughout the process. So, the size of the
cut separating the final two super-nodes is exactly k. In fact, one of these two super-nodes corresponds to
S∗ being contracted and the other one corresponds to S∗.

In above we described the gist of the idea of Karger’s algorithm. There are several missing points in the
above description. First of all, when we recursively call the algorithm, we are recursively using the above
claim. So, we need to make sure the size of the min-cut of G does not decrease when we contract an edge.

Fact 1.2. For any graph G, when we contract an edge (u, v) the size of the minimum cut does not decrease.

We leave the proof of the above fact as an exercise.

Secondly, when we choose n/4 edges uniformly at random many of them may be parallel, so after contraction
the number of vertices of G may go down only by 1. To avoid running into these special cases, it suffices to
contract edges one by one. That is, each time we choose a uniformly random edge of G and we contract it.

Theorem 1.3. For any graph G = (V,E) with n nodes and any min-cut (S∗, S∗), Algorithm 1 returns
(S∗, S∗) with probability at least 2

n(n−1) .

Lecture 1: Contraction Algorithm 1-3

Algorithm 1 Karger’s Algorithm

for i = 1→ n− 1 do
Choose a uniformly random edge (u, v) and contract it, i.e., remove u, v, add a new node uv, connect

all edges that go to u or v to the new node uv, also remove all loops.
end for
Return the number edges between the final two super-nodes as the size of the min-cut.

Proof. Let, Ai be the event that the edge picked in step i of the loop is not in E(S∗, S∗). Observe that
the algorithm succeeds in finding (S∗, S∗) if A1, A2, . . . , An−2 occur, i.e., if we never contract an edge of
E(S∗, S∗). So, we just need to lower bound P [A1, A2, . . . , An−2]. By Bayes rule we have,

P [A1, . . . , An−2] = P [A1]P [A2|A1]P [A3|A1, A2] . . .P [An−2|A1, A2, . . . , An−3] .

Now, by Claim 1.1 and Fact 1.2, for all i,

P [Ai|A1, . . . , Ai−1] ≥ 2

n− i + 1
.

Therefore,

P [A1, . . . , An−2] = P [A1] ≥
(

1− 2

n

)(
1− 2

n− 1

)
. . .

(
1− 1

3

)
=

n− 2

n
· n− 3

n− 1
· n− 4

n− 2
. . .

2

3

=
2

n(n− 1)
= 1/

(
n

2

)
.

The following corollary is immediate from the above theorem.

Corollary 1.4. Any graph has at most
(
n
2

)
min-cuts.

Proof. Suppose there is a graph G that has more than
(
n
2

)
min-cuts. Then, for one of those cuts, say (S, S)

the probability that Algorithm 1, finds (S, S) is less than 1/
(
n
2

)
. But, this is a contradiction.

In fact, the above bound is tight. A cycle of length n has exactly
(
n
2

)
min-cuts, one corresponding to each

possible way to delete two edges of the cycle.

Runtime and Boosting Probability of Success. It is not hard to see that one can run Algorithm 1
in time O(n2), but as we proved above the success probability of each execution is just O(1/n2). Using the
boosting idea, we can boost the probability of success to 1− 1/n by running O(n2 log n) independent copies
of the above algorithm and returning the best cut that any of the copies find.

Note that, running Karger’s algorithm n2logn times produces a min cut with high probability; but this way
we have to spend O(n4 log n) to find the min-cut. In the next section we describe a much faster algorithm
due to Karger and Stein.

1-4 Lecture 1: Contraction Algorithm

1.3 Karger-Stein Algorithm

Recall that Karger’s algorithm only fails if it contracts an edge of the min-cut. Also, note that the probability
that we contract an edge of the min-cut at the beginning is only 2/n while towards the end of the algorithm
this probability goes up to a constant. In particular, in the very last step there is a probability of 1/3 that
we contract an edge of the min-cut.

The idea of Karger-Stein algorithm is to run multiple independent copies of the Karger’s algorithm when
the size of the Graphs gets smaller. The idea kind of resembles the idea fault tolerant systems where one
stores multiple copies of the data to decrease the probability of failure.

Let us describe Karger-Stein’s algorithm.

Algorithm 2 Min-cut(G = (V,E))

Let n = |V |. If n = 2 return the unique cut separating the two nodes of G.
for i = 1→ n− n/

√
2 do

Choose a uniformly random edge and contract it.
end for
Let G′ be the contracted graph. Call Min-cut(G′) twice and return the best cut that any of these two
copies find.

First, let us calculate the running time. Let T (n) be the time it takes to compute the min-cut of a graph of
size n. Then,

T (n) = O(n2) + 2T (n/
√

2)

We can use the master theorem to solve the above recurrence. But, usually it is easier to open it up a couple
of times and see the pattern. We can write

T (n) = O(n2) + 2O((n/21/2)2) + 4O((n/21)2) + . . .

= O(n2) + O(n2) + O(n2) + · · · = O(n2 log n).

Let us divide the work of the algorithm into O(log n) phases; in the first phase the algorithm goes from n to

n/
√

2, in the second phase it goes from n/
√

2 to n/
√

2
2

and so on. The number of copies are chosen such
that the algorithm spends exactly the same amount of work O(n2 in each phase.

It remains the calculate the probability of success. In the next theorem we show that the algorithm succeeds
with probability Ω(1/ log n). This shows that to boost the probability of success to 1 − 1/n it is enough
to run log2 n independent copies of the above algorithm. Therefore, the algorithm finds the min-cut with
probability 1− 1/n in time O(n2 log3 n).

Theorem 1.5. For any min-cut (S∗, S∗), Algorithm 2 finds this cut with probability at least 1/2 log n.

Proof. Suppose we call Min-cut function form some graph H (which is a contracted G) with r vertices. By
an analysis similar to Theorem 1.3, the probability that the we do not contract any edge of (S∗, S∗) in the
r − r/

√
2 steps of the loop is at least

r − 2

r
· r − 3

r − 1
. . .

r/
√

2− 2

r/
√

2
≈ (r/

√
2)2

r2
= 1/2.

The algorithm succeeds in finding the min-cut (S∗, S∗) if Min-cut(G) does not contract an edge of (S∗, S∗)
in its for loop and at least one of the two copies succeeds in finding the cut. We prove inductively that for

Lecture 1: Contraction Algorithm 1-5

any graph with n vertices the probability of success is at least 1/2 log n. Assuming by induction hypothesis,
that the algorithm succeeds on G′ with probability at least p ≥ 1/2 log(n/

√
2). Here the logs are all in base

2.

The probability that the algorithm succeeds in G is at least

1

2
(p + p− p2)

Note that p + p − p2 is the probability that at least one of the two copies succeed in finding the cut. The
term p2 is the probability that both copies succeed (because they are independent); we need to subtract this
quantity because it is counted twice. So, it is enough to show that

1

2
(p + p− p2) = p− p2/2 ≥ 1

2 log n
.

In the worst case we have p = log(n/
√

2). So, we need to show

1

2 log(n/
√

2)
− 1

8 log(n/
√

2)
≥ 1

2 log n
.

Equivalently, it is enough to show

1

log(n/
√

2)
− 1

log n
≥ 1

4 log(n/
√

2)

But,
1

log(n/
√

2)
− 1

log n
=

log n− log(n/
√

2

log n log(n/
√

2)
=

1/2

log n log(n/
√

2)
≥ 1

4 log(n/
√

2)

as desired.

References

[Kar93] D. R. Karger., ”Global min-cuts in RNC, and other ramifications of a simple min-out algorithm,”
in SODA. , 1993, pp. 2130.

[KS93] D. R. Karger and C. Stein, ”An O(n2) algorithm for minimum cuts”, in STOC., (1993)

	Introduction to Randomized Algorithms
	Karger's Algorithm
	Karger-Stein Algorithm

