
CSE 521: Design and Analysis of Algorithms I Winter 2017

Lecture 10: Clustering, Spectral Partitioning
Lecturer: Shayan Oveis Gharan 02/13/17 Scribe: Yihan Jiang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

10.1 Low Rank Approximation in Optimization

In this lecture we are going to study Low Rank Approximation applications in optimization. In particular,
we will discuss a spectral algorithm for the maximum cut problem. Given a graph G = (V,E), find S ⊆ V
such that |E(S, S̄)| is maximized. As we discussed in the last lecture, given adjacency matrix A, Max Cut
Problem can be formed as:

max
x∈{0,1}n

xTA(1− x) (10.1)

Max Cut Problem is among Karp’s 21 NP-complete problems. It is also shown the problem hard to approx-
imate with a factor better than 16/17 unless P = NP . We will prove the following theorem.

Theorem 10.1. Let as k > 1 be an integer, for any matrix A ∈ {0, 1}n×n, we can approximate (10.1) with

an additive n2
√
k

error, in O(kkpoly(n)) time.

Note that if G is a dense graph the above theorem gives a (1−ε) multiplicative approximation for a sufficiently
large k.

Corollary 10.2. Suppose for every vertex i of G, d(i) ≥ c · n for a constant c > 0 and let ε > 0. Then, for
k ≤ O(1

c2ε2), there is an algorithm that returns a cut of size at most (1 − ε) fraction of the optimum. The
algorithm runs in time O(kk poly(n)).

Proof. First of all, it is not hard to see that the optimum solution of Max Cut for any graph G is at least
|E|/2 (and at most |E|). This is because a uniformly random set S cuts half of the edges in expectation.

Since every vertex has degree at least cn,

|E| ≥ n(cn)/2 = cn2/2.

Now, choose k = O(1
c2ε2) such that 1/

√
k = εc/2. Then, by Theorem 10.1 there is an algorithm that finds a

cut of size at least

OPT − n2/
√
k ≥ OPT − εcn2/2 ≥ (1− ε)OPT

where in the last inequality we used that OPT ≥ cn2/2.

To prove Theorem 10.1, first we approximate A with rank k matrix, Ak. Secondly we solve the optimization
problem (10.1) with respect to Ak. It turns out that, since Ak is a low rank matrix, we just need to solve
a k-dimensional problem, as opposed to the original n dimensional problem of choosing x ∈ {0, 1}n. In the
second step, we will show to approximately solve this problem using a technique called ε-net.

10-1

10-2 Lecture 10: Clustering, Spectral Partitioning

10.1.1 Step 1

Given a matrix A ∈ {0, 1}n, firstly we prove the following claim. Note that here for simplicity we assume A
is a symmetric matrix; but the same proof works for non-symmetric matrices.

Claim 10.3. For an integer k ≥ 1, let Ak be the best rank k approximate of A with respect to the Frobenius
norm. Then, for any vector x ∈ {0, 1}n,

|xTA(1− x)− xTAk(1− x)| ≤ O(
n2√
k

).

Proof. As

A =
∑
i

λiviv
T
i ,

with eigenvalues λ1 ≥ λ2, ... and corresponding orthonormal eigenvectors v1, . . . , vn. As we discussed in the
previous lecture,

Ak =

k∑
i=1

λiviv
T
i .

Now, we can write,

|xTA(1− x)− xTAk(1− x)| = |〈x, (A−Ak(1− x)〉|
≤ ‖x‖ · ‖(A−Ak)(1− x)‖2
≤ ‖x‖ · ‖A−Ak‖2.‖1− x‖
≤
√
n(λk+1)

√
n = nλk+1

The first inequality follows by Cauchy-Schwarz inequality(|〈a, b〉| ≤ ‖a‖ · ‖b‖ for any two vectors a, b). The

third inequality follows from the definition of matrix operator norm. ‖A−Ak‖2 = maxy
‖(A−Ak)y‖
‖y‖ . The last

inequality follows from the definition of x,Ak. In particular, for any binary vector x,

‖x‖2 =

n∑
i=1

x2i =

n∑
i=1

xi ≤ n.

Also by definition of Ak,

A−Ak =

n∑
i=k+1

λiviv
T
i ,

But, as we proved in lecture 8, the operator norm is equal to the largest singular value (or largest eigenvalue
for symmetric matrices), so ‖A−Ak‖2 = λk+1.

Now, to finish the proof we need to upper bound λk+1. Since λ1 ≥ ... ≥ λn,

λ2k+1 ≤
λ21 + ...+ λ2k+1

k + 1
≤
∑n
i=1 λ

2
i

k + 1
=
||A||2F
k + 1

=
n2

k + 1

In the second to last equality we use the fact that A2
F =

∑
i λ

2
i . And, in the last equality we use that

A ∈ {0, 1}n×n matrix. So we have λk+1 ≤ n√
k

, which proved the claim.

Note that the above upper bound on λk+1 is very loose. In the worst case, if all of the first k+ 1 eigenvalues
are equal and the rest are 0, then the bound is tight; there are graphs of this from but in such a case one
should choose k at the point where there is a large gap between eigenvalues. This idea can be very useful
in practice. Because many of the matrices that we work with in practice have large gaps between their
eigenvalues or singular values. So, we can approximate them up to a very small error using a low rank
approximation.

Lecture 10: Clustering, Spectral Partitioning 10-3

10.1.2 Step 2

In the second step we approximately solve (10.1) for a low rank matrix Ak. Recall that Ak =
∑k
i=1 λiviv

T
i .

So, for a vector x,

xTAk(1− x) = xT

(
k∑
i=1

λiviv
T
i

)
(1− x) =

k∑
i=1

λi〈vi, x〉〈vi, 1− x〉. (10.2)

Recall that x is supposed to be an indicator vector of a set. For a set S, let 1
¯
S is defines as follows:

1Si =

{
1 if i ∈ S
0 otherwise.

Define vi(S) =
∑
j∈S vi,j = 〈vi,1S〉. So, we can calculate 1

¯
STAk(1−1

¯
S) using v1(S), . . . , vk(S), v1(S), . . . , vk(S).

Note that this is an inherently 2k dimensional problem, so one should expect to solve it faster, i.e., in time
exponential in k. This may not be clear at this point because we associate each of the 2n possible solutions
to the max cut problem with one point in a k dimensional space. So, in the worst case, one needs to brute
force over all such vectors to find the best cut.

We show that it is enough to have an approximate value of vi(S) for every coordinate to aprpoximately
maximize (10.1) for Ak. It turns out that if we have vi(S) only with some small error ε still that is enough

to approximate 1S
T
Ak(1 − 1S) within n2/

√
k error. In particular, supposed |ṽi(S) − vi(S)| ≤ ε for all i.

Then, ∣∣∣∣∣
k∑
i=1

λivi(S)vi(S)−
k∑
i=1

λiṽi(S)ṽi(S)

∣∣∣∣∣ ≤
∣∣∣∣∣
k∑
i=1

λivi(S)vi(S̄)−
k∑
i=1

(vi(S)± ε)(vi(S̄)± ε))

∣∣∣∣∣
≤

k∑
i=1

λi · ε · max
{1≤j≤k

{vj(S), vj(S̄)}

≤ n
√
k

√
n

k

√
n

= O(
n2√
k

)

Let us discus the last inequality. We choose ε = O(
√
n
k). For every set S,

vj(S) = 〈vj , S〉 ≤ ‖vj‖ · ‖1S‖ ≤
√
n.

Also, by Cauchy-Schwarz inequality,

k∑
i

λi ≤
√
k ·

√√√√ k∑
i

λ2i ≤
√
k · ‖A‖F =

√
k|E| ≤ n

√
k.

Now, we define ṽi(S) by rounding vi(S) to a multiple of ε. This way, we essentially discretize the vector
vi(S) and vi(S). Note that since −

√
n ≤ vi(S) ≤

√
n,

ṽi(S) ∈ {−kε,−(k − 1)ε, ...+ kε}.

So, now, our search space only has (2k)2k discrete points. Note that the discretization argument essentially
reduces our 2n possible solutions to max cut to (2k)2k many solutions. So, all we need to do is to brute force

10-4 Lecture 10: Clustering, Spectral Partitioning

over all possible ṽ vectors, i.e., all (2k)2k possibilities. For each of them we can calculate
∑k
i=1 λiṽi(S)ṽi(S)

and choose the best point that we find. The algorithm runs in time O((2k)2k poly(n)).

The above idea is called an ε-net. Whenever we have an optimization problem in a k dimensional space even
if there are 2n possible solutions to our problem we can divide the space by a grid with cell size ε. Then,
for each cell we choose a representative. We brute force over all of the cells and choose the representative
of highest value among all sets as the solution to our optimization problem. Note that there is a tradeoff in
choosing ε. On one hand, we want to choose ε as big as possible to decrease the size of the search space of
our brute force algorithm and on the other hand we want to choose it as small as possible to make the error
incurred by choosing just one representative per cell as small as possible. In practice one should choose ε
based on the available computational power.

Finally, there is one technical point that we did not mention. For any approximate vector x ∈ {−kε,−(k −
1)ε, ...,+kε}2k, we need to consider x in our brute force algorithm if there is a set S where the approximate

(ṽ1(S), . . . , ṽk(S), ṽ1(S), . . . , ṽk(S)) = x.

To find such a set we can use tools from convex optimization, and in particular linear programming. We will
discuss this in future lecture. But, the upshot is that we can find such a set S for a given vector x efficiently.

10.2 Spectral Partitioning

In the next lecture we will discuss spectral partitioning algorithms. Let us conclude this section by giving
background on a very important matrix associated with graphs which is called the Laplacian matrix.

For two vertices i, j of a graph we use i ∼ j to denote that (i, j) ∈ E is an edge of G.

Definition 10.4 (Laplacian Matrix). Given G = (V,E) a weighted graph G, where every edge (i, j) has
weight wi,j. Consider the weighted adjacency matrix where for every edge (i, j)

Ai,j = Aj,i = wi,j ,

and the rest of the entries are zero. Also, let D be the diagonal matrix of vertex degrees; that is for each
vertex i,

Di,i = dw(i) =
∑
j∼i

wi,j

The Laplacian matrix of G
LG = D −A.

In other words, it has degrees on the diagonal and the off-diagonal entries Li,j is −wi,j if there is an edge
and 0 otherwise.

For unweighted graph G, the quadratic form of LG is

xTLGx = xT (D −A)x

=
∑
i

d(i)x2i −
∑
i∼j

xixj

=
∑
i

d(i)x2i − 2
∑

i∼j:i<j
xixj =

∑
i,j∈G

(xi − xj)2

Similarly for a weighted graph:

xTLGx =
∑
i,j∈G

wi,j(xi − xj)2 ≥ 0 (10.3)

Then the following fact is immediate.

Lecture 10: Clustering, Spectral Partitioning 10-5

Fact 10.5. For any (weighted) graph G, LG is a PSD matrix, LG � 0

Proof. By variational characterization of eigenvalues (see Lecture 8, section 2), LG’s minimum eigenvalue is

λmin(LG) = min
x

xTLGx

xTx
= min

x

∑
i∼j(xi − xj)2

xTx
≥ 0.

where we used that the numerator is always nonnegative.

Fact 10.6. λmin(LG) = 0

Proof. Let x = ~1 be the all ones vectors. Then,∑
i∼j

(xi − xj)2 =
∑
i∼j

(1− 1)2 = 0.

Since by Fact 10.5, yTLGy ≥ 0 for any vector y, by variational characterization of eigenvalues, the smallest
eigenvalue of LG is zero.

Lemma 10.7. Let λ2 be the second smallest eigenvalue of LG. Then, λ2 = 0, if and only if G is disconnected.

The above lemma shows a very nice connection between a combinatorial property of a graph and an algebraic
property of its matrices. Namely, we can test whether a given graph is connected without running any graph
search algorithm, include BFS or DFS. All we need to do is to test if the second eigenvalue of Laplacian
matrix is nonzero. In the future lectures we see efficient algorithms to approximately compute the second
eigenvalue of the Laplacian matrix.

Proof. First, we prove that if G is not connected, then λ2 = 0. Suppose G is disconnected vertex and S and
there is no edge between S, i.e.,

|E(S, S)| = 0.

We construct x as:

xi =

{
1
|S| if i ∈ S
− 1
|S| if i ∈ S̄

Since x assign same number to all vertices of S, and all vertices of S, for all (i, j) ∈ E, we have xi = xj , so

xTLGx =
∑
i∼j

(xi − xj)2 = 0.

Note that in the above we also use that there is no edge between S, S. Since the first eigenvector of LG is
the all ones vector, by variational characterization,

λ2 = min
x:〈x,1〉=0

xTLGx

xTx
.

Since, the above vector x is orthogonal to 1, λ2 = 0

Conversely, suppose λ2 = 0; we show that G is disconnected. Let x be the eigenvector associates with λ2.
Then, by variational characterization, 〈x,1〉 = 0 and

xTLGx =
∑
i∼j

(xi − xj)2 = 0.

10-6 Lecture 10: Clustering, Spectral Partitioning

The RHS implies that for all i ∼ j,
(xi − xj)2 = 0⇒ xi = xj .

But this means that any two vertices i, j which are in the same connected component of G we have xi = xj
since equality means transitive. So to show that G has two connected components it is enough to show that
x assigns two distinct values to the vertices of G, or x is not a constant vector. But, since x is orthogonal
to ~1. there is i, j such that xi 6= xj as desired.

We will use above properties for spectral graph theory to design a spectral partitioning algorithm.

	Low Rank Approximation in Optimization
	Step 1
	Step 2

	Spectral Partitioning

