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Suppose there is an unknown distribution, D and we want to estimate the mean. A possible suggestion is
to draw independent samples
L1,y,L2y+..,Lp

1

=y i=1"

n
Laws of large number say that as n goes to infinity the empirical average converges to the mean. The question
we want to address in this lecture is “how large should n be” in order to get a an e-additive approximation

of the true expectation? As a real world application, we can use this idea to estimate the people opinion in
polling by asking only a few of the voters randomly.

from D and return the empirical average,

We start this lecture by a simple example: Suppose that the average GPA in CSE 521 is 2.0 / 4.0. What
fraction of the students have recieved at most a 3.0?7 It turns out that always at least 1/3 of the student
received at most 3.0. In the worst case, % of the students score 0.0, and % get 3.0 + €. We can justify this
claim using Markov’s inequality.

1.1 Markov’s Inequality

Theorem 1.1 (Markov’s Inequality). Let X > 0 be a random variable. Then for all k,

P[X > k-E[X]) <

=

equivalently:
E
PIX > k| < %

So, in our class average GPA example, X denotes the GPA of a random student, E[X] = 2 and k = 3/2.
The inequality says at most 2/3 of the students received more than 3.0 or at least 1/3 receive less than 3.0.

Proof. The proof is a simple one line argument,
EX]=Y PX=i>) i-PX=i>) k-PX=i=k-P[X >k
i i>k i>k
So, P[X > k] <E[X]/k as desired. O

Observe that in the above proof is tight, i.e., all inequalities are equalities, if the distribution of X has only
two points mass,

X — 0 W.p.l—l/k‘.
k+e wp. 1/k
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In other words, this example shows that if E [X] is the only information that we have about X, then Markov’s
inequality is the best bound we can prove on deviations from the expectation of X.

1.1.1 Applications of Markov’s Inequality: Fixed points of permutations

Let [n] := {1,...,n}. A permutation, o : [n] —1. [n], is a bijection between [n] and [n]. Suppose we a

choose a uniformly random permutation o. What is the probability that for two 7,7, 0; = ¢ and o; = j, i.e.,
that the permutation has two fixed points?

Let X; =1[o; =4] . Let X = > X;. Note that X is exactly equal to the number of fixed points of o. So
we want to upper bound P [X > 2]. We are going to use Markov’s inequality, but first we need to calculate
E[X].

E[X]=E {Z XZ}
= Z E [X;] (by linearity of expection, not proven here)
= ZIF’ [X; =1] (expectation of an indicator)

So by Markov Inequality,
P[X >2] <

N | =

1.2 Chebyshev’s Inequality

Markov’s Inequality is the best bound you can have if all you know is the expectation. In its worst case, the
probability is very spread out. The Chebyshev Inequality lets you say more if you know the distribution’s
variance.

Definition 1.2 (Variance). The variance of a random variable X is defined as

Var(X) =E [(X — EX)?

Let us prove an identity on Var(X).

where we used linearity of expectation. Note that for any number X, (X — EX)? > 0. Therefore, for any
random variable X, Var(X) > 0. So, by above identity we always have

E[X?] > E[X].

i.e., the 2nd moment is at least the 1st moment squared.



Lecture 2: Concentration Bounds 1-3

Theorem 1.3 (Chebyshev’s Inequality). For any random variable X,

P[|X - EX|> ¢ < Vang)
or equivalently
1
PX —E[X]|> ko] < -5

where o = \/Var(X) is the standard deviation of X.

The second inequality in theorem can be read that any random variable is within 3 standard deviation of
the expectation with probability 90%. It turns out that Chebyshev’s inequality is just Markov’s inequality
applied to the variance R.V., Y = (X — E [X])2.

Proof. Let Y := (X — EX)? be a nonnegative random variable. So, by Markov’s inequality,

E[Y]

P[Y >¢%] <
€

In other words,
Var(X)

PIX -E[X]]*> €] > —;

€
Taking square root of the both sides of the inequality gives,

PX —E[X]| > ¢ > Y2X)

€2

as desired O

1.2.1 Polling

In this section we use Chebyshev’s inequality to answer the question that we raised at the beginning of
this lecture. Suppose there is an unknown distribution D with mean p and we want to estimate p using
independent samples of D,

X1, Xo9,..., X,

First, observe that by linearity of expectation,

E

1
n =
K3
So, we want to use Chebyshev’s inequality to upper bound,

X X e+ X,
P{ 1+ Xo 4+ —u’>e}

n

X1t 4X
n

To use Chebyshev’s inequality, first we need to calculate the variance. Let X = = he the empirical

average. We use the following lemma to bound the variance of X.

We say a set of random variables X1, X5, ..., X, are pairwise independent if for all 1 <4,j <n

E[X:X;]=E[X;]E[X;].
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Lemma 1.4. For any set of pairwise independent random variables Xy, ..., X,

Var(X; +---+ X,) =Var X; +--- + Var X,

Proof. We can write,

Var(Xy + -+ X)) =E [(X1 + - + X)?] — (EX; +EX5 + - + EX,,)?
=E [Y X X;| - > E[X,]E[X]]
] N
=Y E[X]] - (E[X)?
= Var(X;).
i=1
In the second to last equality we used pairwise independence. O

Let’s go back to the polling example; recall X1, ..., X, are independent samples of D, so they are pairwise
independent, and by the above lemma,

X1+ + X,
n

_ Var(D)

Var(X) = Var ( ) = % Var(X; + -+ X,) = %(Var(Xl) + -+ Var(X,,))

Therefore, by Chebyshev’s inequality,

Var(Z)D) (1.1)

PIIX —p|l > ¢ <
ne

Now, let/’s continue on the polling example, suppose for all i,

X, = 1 w.p. p. 7
0 otherwise

i.e., p fraction of the population would vote yes on the election, and we want to estimate p within e additive
error. So, it all we need to do is to upper bound the variance of X;, First, we calculate the second moment,
for all 4,
IE[XZ} =12.p+0%-(1—-p)=p.
Therefore,
2
Var(X;) =E [X}]| —E[X;]" =p—p* =p(1 —p) <

Therefore, by (1.1)
X,
P HZ’ — p‘ >e€
n

Suppose we choose 10,000 individuals from the population randomly and we calculate the empirical mean;
by above inequality with probability 15/16 our estimate is within 2% of the true mean. Note that the
importance of this inequality is the the size of the sample is independent of the size of the population. In
general if we want to obtain an e-additive error with probability 1 — ¢ we need O(1/d¢?) many samples.

Next lecture we will see a stronger concentration bounds, a.k.a., Chernoff bounds. We see that for the same
polling example it is enough to use O(%2 log %) samples to obtain an e-additive approximation of the mean
with probability 1 — 4.
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