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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In the previous lecture, we learnt about some of the concentration bounds commonly used in probability
theory. We are going to learn some more concentration bounds in this lecture.

3.1 Birthday Paradox

The Birthday paradox is a well-known problem in probability theory which finds the probability that some
pairs of persons in a set of n randomly chosen persons will have the same birthday. It assumes that each
day of the year (except February 29) is equally probable for a birthday. It can be easily noted that the
probability reaches 100% when the number of people reaches 366, since there are 365 days in a year.

Let X1, X2, . . . Xn be n independent and identically distributed (i.i.d.) random variables, where Xi ∈
{1, 2, . . . N} denotes the birthday of the person i. We say there is a collision if for some 1 ≤ i, j ≤ n, we
have Xi = Xj . Otherwise, (if for all i, j, Xi 6= Xj) we say there is no collision. We prove the following two
claims:

Lemma 3.1. If n ≤
√
N , then,

P [no collision] ≥ 1

2
.

Lemma 3.2. If n ≥ c
√
N , then,

P [collision] ≥ 1− 2

c2
.

Let Yi,j = I [Xi = Xj ] be the random variable indicating that Xi = Xj . Let Y =
∑
i,j Yi,j . Note that by

definition Y is always a nonnegative integer.

We starting by proving Lemma 3.1 By definition of Y , it is enough to show P [Y = 0] ≥ 1/2; equivalently,
it is enough to show P [Y ≥ 1] ≤ 1/2. The latter inequality is very suitable for an application of Markov’s
inequality. To show the latter it is enough to show E [Y ] ≤ 1/2. By linearity of expectation,

E [Y ] = E

∑
i,j

Yi,j

 =
∑
i,j

E [Yi,j ] =
∑
i,j

P [Yi,j = 1] =

(
n
2

)
N

(3.1)

The last equality uses the fact that for all i, j, P [Yi,j = 1] = 1
N .

So, by Markov’s inequality,

P [Y ≥ 1] ≤
(
n
2

)
N

=
n(n− 1)

2N
≤ 1

2
⇒ P [Y = 0] ≥ 1

2
(3.2)

which proves Lemma 3.1

Next, we prove Lemma 3.2. In this case, we want to lower bound P [Y ≥ 1]; or equivalently, upper bound
P [Y = 0]. Note that Markov inequality does not give any interesting bound in this case. In fact if the only
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information we have about Y is its expectation then Y could be 0 with probability 1 − ε and E [Y ] /ε with
probability ε. So, to prove the claim we upper bound the variance of Y and use Chebyshev inequality.

First, observe that the random variables Yi,j are pairwise independent, since Xi = Xj does not convey
any information about whether or not Xi = Xk for some k 6= j. Also, note that Yi,j ’s are not three-way
independent; in particular, if Yi,j = 1, Yj,k = 1 then Yi,k = 1.

Therefore, by pairwise independence property of Yi,j ’s, we get

Var[Y ] =
∑
i,j

Var(Yi,j) =
∑
i,j

E
[
Y 2
i,j

]
− (E [Yi,j ])

2 =
∑
i,j

1

N
− 1

N2
≤
∑
i,j

1

N
=

(
n
2

)
N

(3.3)

Observe that variance of Y is less than its expectation. So, σY ≤
√
EY . As we mentioned in the previous

lecture, we expect that with high probability Y is within 3 standard deviation of its expectation. So, if
E [Y ]� 0, we have Y ≥ 1 with high probability.

Now, let’s make this formal. Using Chebyshev’s inequality with ε = E [Y ], we get

P [|Y − E [Y ] | ≥ E [Y ]] ≤
(
n
2

)
/N((

n
2

)
/N
)2 =

N(
n
2

) ≈ 2

c2
(3.4)

Therefore,

P [Y = 0] ≤ P [|Y − E [Y ] | ≥ E [Y ]] ≤ 2

c2
. (3.5)

This shows that P [Y ≥ 1] ≥ 1− 2
c2 as desired. This proves Lemma 3.2.

3.1.1 Law of Large Numbers

The Law of Large Numbers (LLN) is a theorem which states that the average of the results obtained from
a large number of independent trials of an experiment tends towards the expected value. Central limit
theorems state that for an infintie sequence of random independent variables X1, X2, . . . with mean µ and
a bounded variance.

√
n

(
1

n

n∑
i=1

Xi − µ

)
→ N (0, 1). (3.6)

as n goes to infinity. In this course, we are interested in quantitative forms of this convergence. We will
study this in the form of strong concentration bounds, a.k.a., Chernoff bounds.

Recall that Chebyshev’s inequality implies that for any random variable X,

P [|X − E [X] | ≥ kσ] ≤ 1

k2
(3.7)

Strong concentration bounds imply that if X is an average of independent random variables with standard
deviation σ, and satisfy certain other properties, then

P [|X − EX| ≥ kσ] ≤ e−Ω(k2)

In other words, they give exponentially improved bounds compared to Chebyshev’s inequality. Note that
to get this strong bound we want X to be an average of mutually independent random variables; so unlike
Chebyshev’s inequality pairwise independent is not enough.
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3.2 Hoeffding’s Inequality

In this lecture we discuss Hoeffding’s inequality. We will see two more concentration bounds in the assign-
ments.

Let X1, X2, . . . Xn be n independent random variables such that for all i, Xi ∈ [ai, bi], and let X = X1+···+Xn
n .

Then,

P [|X − E [X] | ≥ ε] ≤ 2 exp

(
−2n2ε2∑n

i=1(bi − ai)2

)
(3.8)

Let us give another interpretation of this inequality. First, observe that

Var[X] =
1

n2

∑
i

Var[Xi] ≤
∑
i(bi − ai)2

n2
.

The last inequality uses that Xi ∈ [ai, bi] for all i. So, we can rewrite the above as

P [|X − EX| ≥ ε] ≤ 2 exp(−2ε2/VarX)

Next, we discuss several applications of Hoeffding’s inequality.

3.2.1 Application 1: Polling

Let us continuou the polling example that we discussed in the last lecture. Consider a set of n Bernoulli
random variables X1, X2, . . . Xn where for all i, Xi = 1 w.p. p and Xi = 0 w.p. 1 − p. By Hoeffding’s
inequality,

P
[∣∣∣∣∑Xi

n
− p
∣∣∣∣ ≥ ε] ≤ 2 exp(

−2n2ε2

n
) = 2 exp(−2nε2) (3.9)

where we used that ai = 0, bi = 1.

So, if we want to estimate the probability p within an additive error ε with probability 1− δ it is enough to
let

n =
ln(1/δ)

ε2
.

To give you a point of comparison, recall that in the last lecture we showed that using Chebyshev inequality,
to estimate p with additive error of ε with probability at 1 − δ we need about δ/ε2. So, for example, if
we want 1 − 2−100 probability of success Hoeffding inequality implies we only need 100/ε2 many samples,
whereas Chebyshev’s inequality says we want 2100/ε2 many samples. You can see that Hoeffding’s inequality
implies a significantly smaller number of samples.

Let us give a second example: suppose we have n = 100 samples; we want to see for what value of ε we can
have 99% probability of success? It follows that we get ε = 1

6 . Now, suppose we increase the number of
samples to n = 10000. How much can we decrease ε to get the same 99% probability of success? Observe
that we can only let ε ≈ 1

60 . Thus, we can decrease ε only proportional to square-root of the number of
samples.

Upshot: The failure probability decreases exponentially with respect to the number of samples whereas the
confidence interval ε only decreases proportional to the square-root of the number of samples.
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3.2.2 Application 2: Random walk

A random walk is a random process that describes a path consisting of a succession of random steps on some
mathematical space. Let us consider the one-dimensional random walk model, in which a person starts at
the position 0 (origin) of the integer number line and moves to his right (+1) or to his left (-1) at each step
with equal probability. Fig. 3.1 shows the model.

Figure 3.1: One-dimensional random walk model

To define the walk formally, let Xi be a random variable denoting whether the person moves to his right or
left in the ith step, so that Xi = +1 w.p. 1

2 and Xi = −1 w.p. 1
2 . Thus X =

∑n
i=1Xi denotes the final

position of the person after n steps. We want to estimate X.

First, observe that E [X] =
∑n
i=1 E [Xi] = 0. Hence according to Hoeffding’s inequality,

P
[∣∣∣∣Xn − 0

∣∣∣∣ ≥ ε] ≤ 2e
−2n2ε2

4n ≈ 2e
−nε2

2 (3.10)

So,

P [X ≥ nε] ≤ 2e
−nε2

2 (3.11)

So with high probability, we can say that the person is at most at a distance of
√
n away from the origin

after n steps.

In the next lecture, we prove that with high probability the person is at distance at least Ω(
√
n) of the origin.

3.2.3 Application 3: Discrepancy theory

In this part we discuss an application of Hoeffding’s inequality in discrepancy theory. This is an important
area of mathematics and it has many application is several areas of computer science including computational
complexity and approximation algorithms.

Given a matrix A ∈ {0, 1}n×n, we want to find a vector x ∈ {−1,+1}n such that ‖Ax‖∞ ≤ a small value.
Note that for a vector x ∈ Rn,

‖x‖∞ = max
i
|xi|.

In other words, we would like to color the columns of A with +1 or −1 such that the sum is as close to 0 as
possible in the `∞ norm.

We show that if we choose x uniformly at random, then with high probability ‖Ax‖∞ ≤ O(
√
n log n).

Theorem 3.3. Suppose we choose each coordinate of x uniformly at random in {+1,−1}. Then,

P
[
‖Ax‖∞ ≤

√
4n lnn

]
≥ 1− 2/n.
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Let a1, a2, . . . , an be the rows of A, i.e.,

A =


. . . a1 . . .
. . . a2 . . .
·
·

. . . an . . .

 (3.12)

Then, we can write,

Ax =


< a1, x >
< a2, x >
·
·

< an, x >

 (3.13)

So, to upper bound ‖Ax‖∞, it is enough to show that with high probability for i, 〈ai, x〉 ≤
√

4n log n.

Fix some 1 ≤ i ≤ n. First, we show that with high probability 〈ai, x〉 ≤
√

4n log n. First, observe that

E [〈ai, x〉] =
∑
j

ai,jE [xj ] = 0.

Note that in the expression
∑
ai,jxj any j for which ai,j = 0, the value of xj is irrelevant. Let ‖ai‖1 =∑

j |ai,j | be the number of nonzero entries of row i. Then,
∑
j ai,jxj is distributed exactly the same as a

random walk process on a line (that we discussed in the last section) of length ‖ai‖1.

So, by (3.11), we have

P [|〈ai, x〉| ≥ ε‖ai‖1] ≤ 2e−ai1ε
2/2 (3.14)

We just replaced n with ‖ai‖1 in the bound in (3.11).

So, for ε =
√

4‖ai‖1 lnn, we have

P
[
|〈ai, x〉| ≥

√
4 lnn‖ai‖1

]
≤ 2e−2 lnn =

2

n2
. (3.15)

Now, we use the union bound.

Union Bound Suppose we have a m (possibly intersecting) probability events E1, E2, . . . , Em. Then,

P [∪Ei] =
∑

P [Ei] .

The proof of this simply follows from the following set-theoretic statement: For any two sets S, T ,

|S ∪ T | ≤ |S|+ |T |.

Union bound is used a lot in conjunction with strong concentration bound. The reason is that strong
concentration bounds prove a very sharp and small probability of failure so that even if we have many
possibilities for failure still we can say none of them occur with high probability.

In the above, we showed that for any row i, with probability at most 2/n2,

〈ai, x〉 ≥
√

4‖ai‖1 lnn.

So, by union bound, with probability at least 1− 2/n, for all i,

〈ai, x〉 ≤
√

4‖ai‖1 lnn ≤
√

4n lnn.

In other words, ‖Ax‖∞ ≤
√

4n lnn with probability at least 1− 2/n as desired.
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3.3 Introduction to Hashing

Now, we start talking about applications of randomization and probability in real-world problems. In the
next couple of lectures we talk about Hashing.

Hashing is a technique of mapping the input data (images, vectors etc.) of arbitrary size to a finite set of
hash values using a suitable hash function. Usually a special data structure called hash table is created to
store the hash values, which makes data search, insertion and deletion faster. Suppose we have a set of large
images (say each of size 1 MB) and we want to store them.

Since each image has 1000, 000 bits, we assume that we have a universe of numbers U = {1, 2, 3, . . . , 21000000}
of all possible images. Say we want to store our images in a table of size N . Ideally we want N � |U |. So,
we need a function h : U → {1, 2, . . . N}. Usually h is called a hash function. The question that we want to
study is how to choose h.

The choice of the hash function may depend on the nature of the input data and their distribution. An
ideal hash function should have the property that the probability that two or more input samples getting
mapped to the same hash value is low, that is it should be almost injective. If two or more samples map to
the same hash value, we store them in a linked list whose address is stored at the location of the hash value
in the hash table. So in order to avoid collision, we create a hash table such that each entry in the table is a
linked list. So, ideally we want the length of the largest list to be as small as possible to minimize the time
to query a given image.

At first, one might suggest a function that maps each image h(Xi) = imodN . But, for such a function if all
of our images have the same reminder modulo N , then they all map to the same location of the hash-table
and the hashing is useless. In general, for a fixed hash function, we cannot expect to prove any worst case
guarantee. So, instead we choose our hash function h from a family of functions H and we show that a
random function chosen from H has a small number of collisions.

So, the question is how should we choose H. Ideally, we want to choose H such that a random function
maps each image to a uniformly and independently chosen location of the hash-table. Let us formalize this.
We say a family H is 1-wise independent if for any image X1 ∈ U and any number a1 ∈ [N ],

Ph∼H [h(X1) = a1] =
1

N

Here the probability is over a uniformly random function h chosen from H.

We say H is 2-wise independent if for any pair of images X1, X2 and any pair of numbers a1, a2 ∈ [N ],

Ph∼H [h(X1) = a1, h(X2) = a2] =
1

N2

The ideal case is if for any sequence of numbers a1, a2, . . . , a|U | (with repetition) chosen from [N ],

P
[
h(1) = a1, . . . , h(|U |) = a|U |

]
=

1

N |U |

We shall study hashing and universal hash functions in more detail in the next lecture.
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