
CSE 521: Design and Analysis of Algorithms I Winter 2017

Lecture 6: Locally Sensitive Hashing
Lecturer: Shayan Oveis Gharan 1/25/17 Scribe: Austin Stromme

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will discuss a reduction of the nearest neighbor search (NNS) problem to that of finding
a locally sensitive hashing function as invented in [IM98].

6.1 Introduction to the Nearest Neighbor Search Problem

The NNS problem is as follows: Suppose P ⊂ Rd is a set of n points. Given any q ∈ Rd find

min
p∈P

dist(p, q).

The distance here could be any arbitrary distance function; in this lecture we will talk more about `1 or `2
distances even though the machinery that we describe can be generalized to a variety of distance functions.
Some applications include: web search, document search, or clustering - these are all situations in which
knowing how “far” an object is from other objects tells us important information.

A naive solution would be to store all of the points and simply loop over all p ∈ P to find the minimum
distance. This takes O(n · d) time and space, which is not good. Ideally we would like to have a query time
that is sublinear in n; we may allow for a super-linear amount of memory to store the data structure.

If d = 1 we could pre-process the points by sorting them and then finding the distance minimizing point
would simply reduce to binary searching for p in a list, and returning the closest of the two adjacent elements
in the list. This takes O(log n) query time and O(n) bits of memory.

Extending the pre-processing idea to higher dimensions d leads to what are known as k-d trees: here the
idea is to partition the space by using coordinate-aligned planes chosen appropriately for the data at hand.
Unfortunately k-d trees generally fail to beat the naive approach when d = Ω(log n). It turns out that in all
known approaches the size of the data structure (or the query-time) grows exponentially in d.

The main underlying difficulty is the well-known facts in high dimensions, which is usually referred to as the
“curse of dimensionality”. Suppose we partition the space by a grid where each cell is a cube of side length
a. Then, a cube of side length a randomly positioned in the space intersects 2d many cells of the grid. This
phenomenon essentially implies that a NNS algorithm based on kd-trees takes time O(2d) in expectation to
look into all of the nearby cells of a query point to find the closes point.

6.2 Reducing to Approximate Nearest Neighbors Search

We now describe the idea of [IM98]. Firstly, instead of solving the exact problem we will look for approximate
solutions. That is instead of finding the closest point p to a query point q, we are happy to find a point p
such that

dist(p, q) ≤ c ·min
s∈P

dist(s, q),

6-1

6-2 Lecture 6: Locally Sensitive Hashing

where c > 1 is the approximation factor of in our algorithm. As we will see the memory and the query time
of our algorithm will be a function of c.

So, let us define the approximate NNS problem. For c > 1, r > 0, the ANNS(c, r) is defined as follows: Given
a set point of points P , construct a data structure such that for any query point q, if there is a point p such
that dist(p, q) ≤ r, it returns a point p′ such that

dist(p′, q) ≤ c · r.

If there is no such p, then we return nothing.

It is not hard to see that we can give a c approximation to the nearest neighbor search problem using the
solution to ANNS(c, r). In fact, all we need to do is to guess minp∈P dist(p, q) up to a multiplicative factor
of 1± ε. By an approporiate scaling assume

diam(P) = max
p,p′∈P

dist(p, p′) ≤ 1

Also, suppose δ > 0 is the minimum possible distance for all pairs of points in our dataset. Roughly speaking,
1/δ can represent the bit precision of the data points stored in our system. We solve ANNS(c(1− ε), r) for
the following values of r,

δ, (1 + ε)δ), (1 + ε)2δ, . . . , 1.

We report the minimal value of r for which we find a point at distance c(1− ε) of q. This reduction imposes
an additional O(log 1

δ) overhead to the query time and the memory of our algorithm. This is because we
need to maintain a separate data structure for each possible value of r in the above sequence.

6.3 Locally Sensitive Hashing functions

From now on we only focus on the ANNS(c, r). The main interesting idea of [IM98] is a reduction from
this problem to the design of a locally sensitive hash (LSH) function. Roughly speaking, an LSH is a hash
function which is sensitive to distance. Ideally, we would like to have a hash function that maps “close points”
to the same value with a high probability and maps “far points” to different values. To be more precise, if
dist(p, q) ≤ r we want them to map to the same value, with a high probability, and if dist(p, q) > c · r we
want them to map to different values with a high probability. Let us give a formal definition

Suppose we have a family a functions H = {h : P → Z} of maps from our points P to the set of integers Z;
we say H is (c, c · r, p1, p2)-LSH if: for all p, q ∈ P :

dist(p, q) 6 r =⇒ P [h(p) = h(q)] > p1

dist(p, q) > c · r =⇒ P [h(p) = h(q)] 6 p2

where the probabilities are over h ∼ H. Ideally, we want to have p1 � p2, but as we see this highly depends
on the magnitude of c. The main idea in the reduction of [IM98] is that even if p1 is slightly larger than p2
it is possible to use many independently chosen functions from H to boost p1 to a number close to 1 and p2
to 1/n.

Before describing the reduction, let us give an example of LSH for binary vectors. We will see several
examples in PS3. Suppose P ⊆ {0, 1}d with Manhattan distance function

dist(p, q) = ‖p− q‖1,

i.e. dist(p, q) is the number of coordinates at which p and q have different bits. Consider the family
H := {hi}di=1 where

hi(p) = pi

Lecture 6: Locally Sensitive Hashing 6-3

is the ith bit of p. Then observe that for each p, q ∈ {0, 1}d

P [h(p) = h(q)] =
bits in common

total bits
=
d− ‖p− q‖1

d
= 1− ‖p− q‖1

d
.

Therefore,

P [h(p) = h(q)] =

{
≥ 1− r

d ≈ e
−r/d if dist(p, q) ≤ r

≤ 1− c·r
d ≈ e

−c·r/d if dist(p, q) ≥ c · r
.

So, H is (c, c · r, e−r/d, e−c·r/d)-LSH.

6.4 Reduction to LSH

Now let us discuss the reduction from ANNS(c, r) to LSH? Well if we had a (r, c · r, p1, p2)-LSH family such
that p1 ≈ 1 and p2 ≈ 0 we could solve the problem as follows: We start by choosing a function h ∼ H
uniformly at random and we store h(p) for all points in P . Given a query point q, we compute h(q) and see
if there is any point p ∈ P where h(p) = h(q). Note that we can do the lookup in O(1) time using a hash
table as we discussed in previous lectures. If there is no such point p, then with high probability there is no
point at distance c · r of q. Thus we only need to show that if we are given an (r, c · r, p1, p2)-LSH family
with the assumption p1 > p2, then we can boost it to get p1 ≈ 1 and p2 ≈ 0.

We do this boosting in two steps. First, we just try to make p2 small. To do this it suffices to take k
independent hash functions from H, and hash each point p ∈ P to a k-dimensional vector,

h(p) = [h1(p), . . . , hk(p)].

Then, by the independence of h1, . . . , hk, for any two points p, q,

dist(p, q) > c · r =⇒ P [h(p) = h(q)] 6 pk2 .

But this doesn’t help us increase p1. In fact, the above hash function maps two close points to the same
vector with probability at least pk1 . How do we do this? We choose ` independent copies of the above
k-dimensional hash function, f1, f2, . . . , f`, for a sufficiently large `, with high probability there is an i such
that fi(p) = fi(q). Assume,

f1(p) = [h1,1(p), . . . , h1,k(p)]

...

f`(p) = [h`,1(p), . . . , h`,k(p)]

It follows that if dist(p, q) ≤ r, then

P [∃i | fi(p) = fi(q)] = 1− P [∀i, fi(p) 6= fi(q)]

= 1− P [fi(p) 6= fi(q)]
`

> 1− (1− pk1)`

The details of the algorithm is described in Equation 6.4.

Next, we describe how to tune the parameters k, `. We choose k such that pk2 = 1/n. Also, assume

p1 = pρ2, (6.1)

6-4 Lecture 6: Locally Sensitive Hashing

for some ρ < 1. As we will see ρ is the main parameter that determines the running time/memory of our
algorithm. We choose ` ∝ n−ρ lnn.

Fix a query point q; it follows by linearity of expectation that for any i,

P [∃p : dist(p, q) > c · r, fi(p) = fi(q)] = n · pk2 ≤ 1.

Summing up over all i, in expectation there are O(`) points in our data set which map to the same hash
value as q for some i. This implies an overhead of O(`) in the query time.

On the other hand, if dist(p, q) ≤ r for some p ∈ P , then

P [∃i : fi(p) = fi(q)] ≥ 1− (1− pk1)` = 1− (1− pρk2)` = 1− (1− n−ρ)` ≈ 1− e`n
−ρ

= 1− 1/n.

In summary, for any point p at distance at most r, our algorithm outputs p with probability at least 1−1/n.
The algorithm in expectation had O(` · d) overhead to examine O(`) points at distance more than c · r form
q.

Algorithm 1 LSH Algorithm

Preprocessing:
Choose k · `, h1,1, . . . , h`,k functions uniformly at random from H.
Construct ` hash tables; for all 1 ≤ i ≤ ` store fi(p) = (hi,1(p), . . . , hi,k(p)) for all p ∈ P in the i-th has
table.

Query(q):
for i = 1→ ` do

Compute fi(q).
Go over all points p where fi(p) = fi(q). For all such points if dist(p, q) ≤ c · r, output p.

end for

6.5 Space and Time Complexity of the Reduction

The algorithm needs to maintain O(`) hash tables. In each hash table we need to store n = |P | hash values
where each value is a k dimensional vector. So, the space complexity of the algorithm is

O(` · n · k) = O(n1+ρ log
n

p2
).

For any query point q we need to spend The query time is O(` · k) time to compute fi(q) for all 1 ≤ i ≤ `.
For any candidate close point p we spend O(d) time to calculate dist(p, q). Let |O| be size of the output,
i.e., the number of points at distance c · r from q. In expectation we examine O(`) far points that we don’t
output. So, the query time is O(d(`+ |O|) in expectation. So, the query time is

O(d(`+ |O|) + ` · k) = O(nρ(d+ log
n

p2
) + |O|d).

Ignoring lower order terms, the algorithm runs with memory O(n1+ρ) and querytime O(nρ).

Let us calculate ρ for the binary vector example that we described at the beginning. Recall that ρ is chosen
such that pρ1 = p2, so

ρ =
ln 1

p1

ln 1
p2

=
r/d

c · r/d
=

1

c
.

REFERENCES 6-5

For example, if c = 2, we need O(n1.5) to store hash tables and we have O(
√
n) query time. As we see the

query time (and memory) get significantly better as we increase c. In practice, we may tune the parameter
c based on the amount of resources available to us.

It has been a very active area of research to design the best of LSH functions for many metrics. In PS3 we
design LSH for `1, `2 distance where ρ = 1/c.

References

[IM98] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards removing the curse of dimen-
sionality”. In: STOC. ACM. 1998, pp. 604–613 (cit. on pp. 6-1, 6-2).

	Introduction to the Nearest Neighbor Search Problem
	Reducing to Approximate Nearest Neighbors Search
	Locally Sensitive Hashing functions
	Reduction to LSH
	Space and Time Complexity of the Reduction
	Examples of Solutions to LSH

