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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Now that we have finished our lecture series on randomized algorithms, we start with a bit of linear algebra
review so that we can use these tools in the algorithms we learn next. The book ‘Matrix Analysis’ by Horn
and Johnson is an excellent reference for all the concepts reviewed here.

8.1 Eigenvalues

For a matrix A ∈ Rn×n, the eigenvalue-eigenvector pair is defined as (λ, x), where

Ax = λx.

Many of our algorithms will deal with the family of symmetric matrices (which we denote by Sn), with
special properties of eigenvalues. We start with the fact that a symmetric matrix has real eigenvalues. This
means we can order them and talk about the largest/smallest eigenvalues (which we’ll do in Section 8.2).

8.1.1 Spectral Theorem

Theorem 8.1 (Spectral Theorem). For any symmetric matrix, there are eigenvalues λ1, λ2, . . . , λn, with
corresponding eigenvectors v1, v2, . . . , vn which are orthonormal (that is, they have unit length measured in
the `2 norm and 〈vi, vj〉 = 0 for all i and j). We can then write

M =

n∑
i=1

λiviv
T
i = V ΛV T . (8.1)

where V is the matrix with vi’s arranged as column vectors and Λ is the diagonal matrix of eigenvalues.

The vi’s in the above theorem form a basis for all vectors in Rn. This means that for any vector x we can
uniquely write it as

x =

n∑
i=1

〈vi, x〉vi.

An application of this is being able to write complicated functions of a symmetric matrix in terms of functions
of the eigenvalues that is, f(M) =

∑n
i=1 f(λi)viv

T
i for M ∈ Sn. For example:

• M2 =
∑n
i=1 λ

2
i viv

T
i .

• exp(M) =
∑∞
i=1

Ak

k! =
∑n
i=1 exp(λi)viv

T
i

• For an invertible matrix, M−1 =
∑n
i=1( 1

λi
)viv

T
i .

Two special functions of eigenvalues are the trace and determinant, described in the next subsection.
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8.1.2 Trace, Determinant and Rank

Definition 8.2. The trace of a square matrix is the sum of its diagonal entries.

Alternatively, we can say the following:

Lemma 8.3. The trace of a square matrix is the sum of its eigenvalues.

We will give three different proofs for this lemma.

Proof 1 : By definition of trace,

Tr(A) =

n∑
i=1

1Ti A1i,

where 1i is the indicator vector of i, i.e., it is a vector which is equal to 1 in the i-th coordinate and it is 0
everwhere else. Using (8.1) we can write,

Tr(A) =

n∑
i=1

1Ti

 n∑
j=1

λjvjv
T
j

1i

=

n∑
i=1

n∑
j=1

λj1
T
i vjv

T
j 1i

=

n∑
i=1

n∑
j=1

λj〈1i, vj〉2

=

n∑
j=1

λj

n∑
i=1

〈1i, vj〉2 =

n∑
j=1

λj .

The last identity uses the fact that for any vector vj ,
∑n
i=1〈1i, vj〉2 = ‖vj‖2 = 1, as 11, . . . ,1n form another

orthonormal basis of Rn. Next, we give two other proofs of the same statement for the sake of intuition.

Proof 2: Write out the characteristic polynomial of A. It turns out that the characteristic polynomial of
A is the unique polynomial of degree n with eigenvalues of A as the roots,

χA(t) = det(tI −A) = (t− λ1)(t− λ2) . . . (t− λn)

Observe that in the RHS of the above, the coefficient of t (up to a negative sign) is equal to the sum of all
eigenvalues. On the other hand, if we expand the determinant of tI − A matrix we see that the sum of the
diagonal entries exactly equals the coefficient of t.

Proof 3: Recall the cyclic permutation property of trace is that

Tr(ABC) = Tr(BCA) = Tr(CAB)
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This is derived simply from definition. Let λ1, . . . , λn be the eigenvalues of A with corresponding eigenvalues
v1, . . . , vn. We have

Tr(A) = Tr

(
n∑
i=1

λiviv
T
i

)

=

n∑
i=1

Tr(λiviv
T
i )

=

n∑
i=1

λi Tr(〈vi, vTi 〉)

=

n∑
i=1

λi.

In the last identity we used that ‖vi‖ = 1 for all i.

Lemma 8.4. The determinant of a matrix is the product of its eigenvalues.

The above lemma can be proved using the characteristic polynomial. It follows from the lemma that de-
terminant is zero if and only if at least one eigenvalue is zero, that is, if the matrix is not full rank. For a
symmetric matrix, we can also state that the rank is the number of non-zero eigenvalues.

8.2 Rayleigh Quotient

Let A be a symmetric matrix. The Rayleigh coefficient gives a characterization of all eigenvalues (and
eigenvectors of A) in terms of the solution to optimization problems. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of A. Then,

λ1(A) = max
‖x‖2=1

xTAx = max
x

xTAx

xTx
(8.2)

Let x1 be the optimum vector in the above. It follows that x1 is the eigenvector of A corresponding to λ1.
Then,

λ2(A) = max
x:〈x,x1〉=0,‖x‖=1

xTAx

And so on, the third eigenvector is the vector maximizing the quadratic form xTAx over all vectors that
orthogonal to the first two eigenvectors. Similarly, we can write

λn(A) = min
‖x‖2=1

xTAx

Let us derive, Equation (8.2). Note that f(x) = xTAx is a continuous function and {x | ‖x‖2 = 1} is a
compact set. So by Weierstrass Theorem, the maximum is attained. Now we diagonalize A using Equation
(8.1) as A =

∑n
i=1 λiviv

T
i and multiply on either side by x to get the following chain of equalities:

xTAx = xT

(
n∑
i=1

λiviv
T
i

)
x

=

n∑
i=1

λix
T viv

T
i x

=

n∑
i=1

λi〈x, vi〉2. (8.3)
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Since ‖x‖ = 1 and v1, . . . , vn form an orthonormal basis of Rn,
∑n
i=1〈vi, x〉2 = ‖x‖2 = 1. Therefore, (8.3)

is maximized when 〈x, v1〉 = 1 and the rest are 0. This means the vector x for which this optimum value is
attained is v1 as desired.

In the same way, we can also get the characterization for the minimum eigenvalue.

Positive (Semi) Definite Matrices A real symmetric matrix A is said to be positive semidefinite(PSD),
A � 0 if xTAx ≥ 0 for all x ∈ Rn. A real symmetric matrix A is said to be positive definite (PD), A � 0, if
xTAx > 0 for all x 6= 0, x ∈ Rn. By Rayleigh-Ritz characterization, we can see that A is PSD if and only if
all eigenvalues of A are nonnegative. Also A is positive definite if and only if all eigenvalues of A are positive.

8.3 Singular Value Decomposition

Of course not every matrix is unitarily diagonalizable. In fact non-symmetric matrices may not have real
eigenvalues the space of eigenvectors is not necessarily orthonormal.

Instead, when dealing with a non-symmetric matrix, first we turn it into a symmetric matrix and then we
apply the spectral theorem to that matrix. This idea is called the Singular Value Decomposition (SVD). For
any matrix A ∈ Rm×n (with m ≤ n) can be written as

A = UΣV T =

m∑
i=1

σiuiv
T
i (8.4)

where σ1 ≥ · · · ≥ σm ≥ 0 are the singular values of A, u1, . . . , um are orthonormal and are called the left
singular vectors of A and v1, . . . , vm ∈ Rn are orthonormal and are call the right singular vectors of A. To
construct this decomposition we need to apply the spectral theorem to the matrix ATA. Observe that if the
above identity holds then

ATA =

m∑
i=1

σiviu
T
i

n∑
j=1

σjujv
T
j =

n∑
i=1

σTi viv
T
i

where we used that 〈ui, uj〉 is 1 if i = j and it is zero otherwise. Therefore, v1, . . . , vm are in fact the
eigenvectors of ATA and σ2

1 , . . . , σ
2
m are the eigenvalues of ATA. By a similar argument it follows that

u1, . . . , um are eigenvectors of AAT and σ2
1 , . . . , σ

2
m are its eigenvalues.

Note that both matrices AAT and ATA are symmetric PSD matrices. In the matrix form the above identities
can be written as

ATA = V ΣUTUΣV T = V Σ2V T = [V Ṽ ]

[
Σ2 0
0 0

]
[V Ṽ ]T (8.5)

AAT = UΣV TV ΣUT = UΣ2UT = [U Ũ ]

[
Σ2 0
0 0

]
[U Ũ ]T (8.6)

where Ṽ , Ũ are any matrices for which [V Ṽ ] and [U Ũ ] are orthonormal. The righthand expressions are
eigenvalue decompositions of ATA and AAT .

To summarize,

• The singular values σi are the squareroots of eigenvalues ofATA andAAT , that is, σi(A) =
√
λi(ATA) =√

λi(AAT ) (λi(A
TA) = λi(AA

T ) = 0 for i > r).

• The left singular vectors u1, . . . , ur are the eigenvectors of AAT the right singular vectors V =
[v1, . . . , vm] are the eigenvectors of ATA.
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In general, computing the singular value decomposition can take O(n3) time.

8.4 Matrix Norms

Any matrix A ∈ Rn×n can be thought of as a vector of n2 dimensions. Therefore, we can measure the ‘size’
of a matrix using matrix norms. For a function ‖.‖ : Rn×n → R to be a matrix norm, it must satisfy the
properties of non-negativity (and zero only when the argument is zero), homogeneity, triangle inequality and
submultiplicativity. We list below a few important matrix norms that we’ll repeatedly encounter:

Frobenius norm:

‖A‖F = |Tr(AAT )|1/2 = (

n∑
i,j=1

a2ij)
1/2. (8.7)

The Frobenius norm is just the Euclidean norm of matrix A thought of as a vector. As we just saw in
Section 8.3,

Tr(AAT ) =

n∑
i=1

λi(AA
T ) =

n∑
i=1

σi(A)2,

therefore this gives us an important alternative characterization of Frobenius norm:

‖A‖F = (

n∑
i=1

σi(A)2)1/2. (8.8)

Operator norm: The operator norm ‖.‖2 is defined as

‖A‖2 = max
‖x‖=1

‖Ax‖ = max
x 6=0

‖Ax‖
‖x‖

(8.9)

It follows by the Rayleigh-Ritz characterization that

max
x

‖Ax‖
‖x‖

=

√
max
x

‖Ax‖2
‖x‖2

=

√
max
x

xTATAx

xTx
=
√
λmax(ATA) = σmax(A).

8.5 Low Rank Approximation

The ideas described in the previous sections are used in low-rank approximation theory which finds many
applications in computer science. A famous recent example was the Netflix problem. We have a large dataset
of users and many of them have provided ratings to many movies. But this ratings matrix obviously has
several missing entries. The problem is to figure out, using this limited data, what movies to recommend to
users. Under the (justifiable) assumption that this is a low-rank matrix,this is a matrix completion problem
that falls in the category of low-rank approximation.

So, we may, for example, leave the unknown entries to be 0. Then, we can approximate the matrix with low
rank matrix. Then, we can fill out the unknown entries with the entries of the estimated low rank matrix.
This gives a heuristic for the matrix completion problem.

Formally, in the low rank approximation problem we are given a matrix M , we want to find another M̃ of
rank k such that ‖M − M̃‖ is as small as possible.
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The famous Johnson-Lindenstrauss dimension reduction tells us that for any set of n points P ∈ Rm, with
high probability, we can map them using Γ ∈ Rd×m, to a d = O(log n)/ε2 dimensional space such that for
any x, y ∈ P ,

(1− ε)‖x− y‖2 ≤ ‖Γ(x)− Γ(y)‖2 ≤ (1 + ε)‖x− y‖2

We do not prove this lemma in this course as it has been covered in the randomized algorithms course. The
important fact here is that the mapping is a linear map and Γ is just a Guassian matrix; i.e., Γ ∈ Rd×m and

each entry Γi,j ∼ N (0,1)√
d

.

As as clear from this context, the dimension reduction ideas are oblivious to the structure of the data.
That is the Gaussian mapping that we defined above does not look at the data point to construct the lower
dimensional map. Because of that it may now help us to observe certain hidden structures in the data. As
we will see in the next lecture, low rank approximation algorithms, chooses the low rank matrix by looking
at the SVD of M . Because of that it typically can reveal many unknown hidden structures between the data
points that M represent.
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