
CSE 521: Design and Analysis of Algorithms Winter 2017

Problem Set 2
Deadline: Jan 30th (at 12:00PM) in Canvas

The goal of this problem set is to learn the idea of minhash. Minhash is a hash function which is commonly
used in practice to estimate the Jaccard similarity of two sets.

1) Suppose we have a universe U of elements. ForA,B ⊆ U , the Jaccard distance of A,B is defined as

J(A,B) =
|A ∩B|
|A ∪B|

.

This definition is used practice to calculate a notion of similarity of documents, webpages, etc. For
example, suppose U is the set of English words, and any set A represents a document considered as a
bag of words. Note that for any two A,B ⊆ U , 0 ≤ J(A,B) ≤ 1. If J(A,B) is close to 1, then we can
say A ≈ B.

Let h : U → [0, 1] where for each i ∈ U , h(i) is chosen uniformly and independently at random. For a set
S ⊆ U , let hS := mini∈S h(i). Show that

P [hA = hB] = J(A,B).

Now, if we have sets A1, A2, . . . , An, we can use the above idea to figure out which pair of sets are “close”
in time essentially O(n|U |). We can also obtain a 1± ε approximation of J(A,B) with high probability
by using O(log(n)/ε2) independently chosen hash functions. Note that the naive algorithm would take
O(n2|U |) to calculate all pairwise similarities.

2) LetX1, . . . , Xn be independent random variables uniformly distributed in [0, 1] and let Y = min{X1, . . . , Xn}.
Show that E [Y] = 1

n+1 and Var(Y) ≤ 1
(n+1)2 .

3) Consider the following algorithm for estimating F0, the number of unique elements in a sequence x1, . . . , xm
in the set {0, 1, . . . , n−1}. Let h : {0, 1, . . . , n−1} → [0, 1] s.t., h(i) is chosen uniformly and independently
at random in [0, 1] for each i. We start with Y = 1. After reading each element xi in the sequence we let
Y = min{Y, h(xi)}.

a) Show that by the end of the stream 1
E[Y] − 1 is equal to F0.

b) Use the above idea to design a streaming algorithm to estimate the number of distinct elements in the
sequence with multiplicative error 1 ± ε. For the analysis you can assume that you have access to k
independent hash functions as described above. Show that k ≤ O(1/ε2) many such hash functions is
enough to estimate the number of distinct elements within 1 + ε factor with probability at least 9/10.

4) We are given a directed graph G = (V,E) with n vertices and m edges. For each vertex v ∈ V , let Nv

denote the set of all nodes reachable from v (including v itself) and let nv = |Nv|. Our goal is to find nv for
each vertex v ∈ V . The best exact algorithm for this problem runs in time O(min{m · n, n2.373}). Here,
we will explore a randomized approximation algorithms that runs in time O(m log n). The algorithm
works as follows:

Step 1) For each vertex v ∈ V choose a uniformly and independently random number sv ∈ [0, 1]. Call
this number the minhash of v.

Step 2) For each vertex v ∈ V , let hv := minw∈Nv sw. The hv values for all vertices v ∈ V can be found
in time O(m log n)!

2-1

http://canvas.uw.edu

2-2 Problem Set 2: Jan 30th (at 12:00PM) in Canvas

Step 3) Let ñv = 1
hv

.

Repeat all of the above steps k times and for each v output as your estimate for nv, the median of ñv
values from the k runs.

a) Describe an implementation of step 2 that runs in O(m log n) time.

b) Implement the above algorithm for k = 20 to approximate nv for each vertex v in the vertex set
of a directed graph. Implement also an exact algorithm for computing these n numbers. Run your
algorithm on oregon2 010331.txt file in the course website. The first line of the input indicates the
number of nodes and directed edges and each following line indicates the source and destination of a
directed edge in order.

Use the following format for your output: In each line write 3 numbers separated by space correspond-
ing to a node v, (i) the id of v, (ii) nv (iii) ñv returned by your implementation of the randomized
algorithm. Sort all lines increasingly according to the node ids.

Please write down your output in the Canvas textbox for Problem 3.

c) Give the best bound you can on the error of the estimate of nv’s output by the approximate algorithm
as a function of k. You can use Chebycheff bounds or Chernoff bounds.

http://canvas.uw.edu
http://courses.cs.washington.edu/courses/cse521/17wi/oregon2_010331.txt

