
CSE 521: Design and Analysis of Algorithms Fall 2018

Problem Set 3
Deadline: Nov 12th in Canvas

1) Prove the following Matrix equations:

a) Let A ∈ Rn×n and let U ∈ Rn×k be a matrix with orthonormal columns U1, . . . , Uk. So, UUT =∑k
i=1 UiU

T
i is a projection matrix. Show that

‖A− UUTA‖2F = ‖A‖2F − ‖UTA‖2F .

b) Let A ∈ Rm×n and B ∈ Rn×m. Show that AB and BA have the same set of nonzero eigenvalues, i.e.,
if ABx = λx, then there exists a vector y such that BAy = λy.

2) For a vector u ∈ Rn, we write u⊗u to denote the vector in Rn2

where for any 1 ≤ i, j ≤ n, (u⊗u)in+j =
ui · uj .

a) Show that for any pair of vectors u, v ∈ Rn,

〈u⊗ u, v ⊗ v〉 = 〈u, v〉2.

b) Let A ∈ Rn×n be a PSD matrix, and let B ∈ Rn×n be the matrix where Bi,j = A2
i,j . Prove that B is

PSD.

Hint: Use part (a) and that any matrix A is PSD iff it can be written as A = CCᵀ for some matrix
C ∈ Rn×k, for some integer k.

c) Extra Credit: Let P = {p1, . . . , pn} ⊆ Rd be a set of points of norm 1. For σ > 0, let Gσ ∈ Rn×n
be the Gaussian kernel on P , i.e.,

Gσ(i, j) =
1√
2πσ

e−‖pi−pj‖
2/2σ.

Prove that Gσ � 0.

3) Let A ∈ Rn×n. Normally, we need to scan all non-zero entries of A to compute ‖A‖2F . In this problem,
we see that if A is PSD then we can approximate ‖A‖2F in time O(n log(1/δ)/ε2) with probability at least
1− δ. Note that this is sublinear in the number of non-zero entries of A. So, indeed our algorithm does
not read all non-zero entries of A.

a) First, assume that all diagonal entries of A are 1, i.e., Ai,i = 1 for all i. Show that for all i 6= j,
Ai,j ≤ 1.

Hint: Use the fact that A is PSD iff A = BBᵀ for some B ∈ Rn×n. Note that you are not explicitly
given B as part of the input in this problem, but you will use it in the analysis.

b) Still, assume all diagonal entries of A are 1. Show that by uniformly sampling O(n/ε2) entries of A,
we can approximate ‖A‖2F with a constant probability.

Hint: For 1 ≤ i, j ≤ n, let X = n2A2
i,j with probability 1/n2. Show that X is an unbiased estimator

of ‖A‖2F . Compute the relative variance of x and show how to obtain 1± ε approximation of ‖A‖2F .

c) Now, we solve the general case: In this case, we sample Ai,j with probability pi,j =
Ai,iAj,j∑
k,l Ak,kAl,l

and if i, j is sampled we let X = A2
i,j/pi,j . Show that X gives an unbiased estimator of ‖A‖2F .

Design an algorithm that by sampling O(n log(1/δ)/ε2) coordinates of A gives a multiplicative 1 ± ε
approximation of ‖A‖2F with probability at least 1− δ.
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4) In this problem we discuss a fast algorithm for approximately estimating the low rank approximation (up
to an additive error) with respect to the Frobenius norm.

a) Let A ∈ Rm×n and suppose we want to estimate Av for a vector v ∈ Rn. Here is a randomized
algorithm for this task. Choose the i-th column of A, Ai, with probability

pi =
‖Ai‖2

‖A‖2F

and let X = Aivi/pi. Show that E [X] = Av. Calculate Var(X) = E
[
‖X‖2

]
− ‖EX‖2.

b) Next, we use a similar idea to approximate A. For 1 ≤ i ≤ s let Xi =
Aj√
spj

with probability pj where

1 ≤ j ≤ n. Let X ∈ Rm×s and let Xi be the i-th columns of X. Note that XXT =
∑s
i=1XiX

T
i .

Show that
EXXT = AAT .

Show that E‖XXT −AAT ‖2F ≤ 1
s‖A‖

4
F .

c) Extra Credit: Let X =
∑s
i=1 σiuiv

T
i be the SVD decomposition of X where σ1 ≥ · · · ≥ σs. Let Uk

be the matrix with columns u1, . . . , uk. So, UkU
T
k =

∑k
i=1 uiu

T
i is a projection matrix. We want to

show that for any such matrix X and Uk,

‖A− UkUTk A‖2F ≤ ‖A−Ak‖2F + 2
√
k‖AAT −XXT ‖F , (3.1)

where Ak is the best rank k approximation of A. Note that if this is true we can simply let s = O(k/ε2)
and then a random X chosen from part (b) would give

‖A− UkUTk A‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F .

Also, note that the algorithm runs in time nnz(A) + O(mk2/ε4) as we need to compute the SVD of
X.

It remains to prove (3.1). First, by part (a) of Problem 1, we have

‖A− UkUTk A‖2F ≤ ‖A‖2F − ‖ATUk‖2F .

Show that ∣∣∣∣∣‖ATUk‖2F −
k∑
i=1

σ2
i

∣∣∣∣∣ ≤ √k‖AAT −XXT ‖F .

You can use without proof that∣∣∣∣∣
k∑
i=1

σ2
i −

k∑
i=1

σi(A)2

∣∣∣∣∣ ≤ √k‖AAT −XXT ‖F ,

where σi(A) is the i-th largest singular value of A. Use the above two equations to conclude (3.1).

d) Use the above algorithm to approxiamte the Einstein image we used in class. Specify how large s
should be to obtain a “good” approximation. Note that you do not need to calculate s based on the
bound on part c; instead just choose enough samples until the approximate image is close to the actual
image. This is supposed to show that for s much smaller than what the theory suggests you will get
a good approximation. Upload the approximate image together with your code.
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