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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

15.1 Power Method

We discussed in previous lectures that computing SVD takes cubic time in the size of the matrix. So, one
in general is interested in faster algorithms for computing (approximating) eigenvalues/eigenvectors of a
matrix. The Power Method is a method to approximate the largest eigenvalue of a PSD matrix M within a
multiplicative 1± ε factor in time linear in the number of nonzero entries of M .

Recall that a Guassian vector x ∈ Rn, is a vector of n independently chosen N (0, 1) random variable, i.e.,
for all 1 ≤ i ≤ n, xi ∼ N (0, 1).

Algorithm 1 Power Method

Input: Given a PSD matrix M � 0.
Choose a random Gaussian vector x ∈ Rn.
for j = 1→ k do

x←Mx . For numerical stability, set x← x
‖x‖ ; we don’t add it here to get a simpler proof.

end for

return x, x
TMx
xT x

Let y be the output vector of Algorithm 1. In our main theorem we show that y is an approximate largest
eigenvector of M .

Theorem 15.1. Given a matrix M � 0 with eigenvalues λ1 ≥ λ2 ≥ . . . λn, for any ε > 0 and integer k > 1
with constant probability,

yTMy

yTy
≥ λ1(1− ε)

1 + 10n(1− ε)2k
.

Note that ε is a parameter of choice in the above theorem (it has nothing to do with the algortihm). We
should choose it based on the error that we can tolerate in our application. For a given ε, letting k = lgn

ε in

Algorithm 1 the RHS of the above theorem becomes λ1(1−ε)
1+ 1

n

.

Also, observe that the algorithm runs a loop for k iterations; each iteration is just a matrix vector product
which can be implemented in time O(nnz(M)). It follows that for any PSD matrix M we can use the above
theorem to find a vector y such that the Rayleigh quotient of y is at least (1− ε)λ1. The algorithm will run
in time O( 1

ε nnz(M) log n).

Before discussing the proof of the above theorem, let us discuss two remarks:

Remark 15.2 (2nd largest eigenvalue:). Suppose we want to estimate the 2nd largest eigenvalue of M .
Then, we can first run the above algorithm to find an approximate largest eigenvector y. Then, we choose
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another random Gaussian vector x. First we make x orthogonal to y by letting:

x = x− 〈x, y

‖y‖
〉 y
‖y‖

.

In other words, if ‖y‖ = 1, we let
x = x− 〈x, y〉y.

Remark 15.3 (Eigenvalues of Symmetric Matrices). Suppose that M is not PSD but it is a symmetric
matrix. Then, we can run the above algorithm on M2 which is a PSD matrix. The algorithm gives a 1± ε
approximation of the largest eigenvalue of M in absolute value.

Remark 15.4 (2nd Smallest eigenvalue of L̃). First of all, it turns out that the largest eigenvalue of L̃ is at
most 2. Therefore, we can turn the smallest eigenvalues of L̃ into the largest ones by working with 2I − L̃.
Note that 2I − L̃ is PSD, and the 2nd smallest eigenvalue of L̃ is the 2nd largest eigenvalue of 2I − L̃. Now,
all we need to do is to choose a Gaussian random vector x and make it orthogonal to the largest eigenvector
of 2I − L̃, and then use the power method

Recall that the smallest eigenvector of L̃ is v1 = D1/21. This is because

vT1 L̃v1 = 1TD1/2(D−1/2LD−1/2)D1/21 = 1TL1 =
∑
i∼j

(1i − 1j)
2 = 0.

Therefore, to find the 2nd smallest eigenvector of L̃ we do the following: Choose a random Gaussian vector
x. Then, let

y = x− 〈x, v1/‖v1‖〉v/‖v1‖,

where v1 = D1/21. Then calculate (2I − L̃)ky as an approximation of the 2nd smallest eigenvalue of L̃.

To prove the above theorem, we use the following 3 claims:

Claim 15.5. For any Gaussian random vector x ∈ Rn and any unit-norm vector v ∈ Rn, we have

P
[
|〈x, v〉| ≥ 1

2

]
≥ Ω(1)

Proof. Recall that by rotational invariance property of Gaussians, 〈x, v〉 is distributed as a N (0, 1) random
variable. It can be seen from the density function of the standard normal random variable that if g ∼ N (0, 1),
then

P [|g| ≥ 1/2] ≥ Ω(1)

as desired. In fact a normal is distributed almost uniformly in the interval [−1, 1]. Therefore, the probability
that it is not in the [−0.5,−0.5] is at least a constant say 1/3.

Claim 15.6. For any Gaussian random vector x ∈ Rn, we have

P
[
‖x‖2 ≤ 2n

]
≥ 1− e

−n
8 .

Proof. The proof follows from strong concentration bounds on sum of independent normal random variables.
Recall the following theorem:

Theorem 15.7. Let g1, . . . , gn ∼ N (0, 1) be independent normal random variables. Then,

P
[∣∣∣∣ 1n (g21 + · · ·+ g2n)− 1

∣∣∣∣ ≥ ε] ≤ e−nε2/8.
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So, we can write

P
[
|x21 + · · ·+ x2n − n| ≥ ε

]
≤ eε

2/8n.

Letting ε = n in the above proves the claim.

Our last claim which finishes the proof of Theorem 15.1.

Claim 15.8. For all vectors x ∈ Rn, ε > 0 and and y = Mkx we have

yTMy

yT y
≥ λ1(1− ε)

1 + ‖x‖2
〈x,v1〉2 (1− ε)2k−1

.

Note that this claim holds for any vector x. Now, if x in the above claim is a Gaussian random vector, then,

by Claim 15.5 and Claim 15.6, ‖x‖2
〈x,v1〉2 ≤ 4n with a constant probability.

Note that we needed randomness in the statement of Theorem 15.1 to ensure that the vector x has a
significant inner product with the first eigenvector of M , with respect to its norm. So Gaussian distributions
are not doing a fundamental role in this proof. For example, we could also choose coordinates of x to be
uniformly and independently chosen from {−1,+1} and almost a similar proof would follow.

Proof. By definition of y,
yTMy = xTMkMMkx = xTM2k+1x

recalling that M is PSD and thus symmetric. Similarly, yT y = xM2kx.

Suppose λ1, . . . , λn are the eigenvalues of M and v1, . . . , vn are the corresponding eigenvectors. Then
λ2k+1
1 , . . . , λ2k+1

n are eigenvalues of M2k+1.

Let us divide the eigenvalues into two groups: λ1, . . . , λj where all of these are greater than or equal to
(1− ε)λ1, and λj+1, . . . , λn where all are less than (1− ε)λ1.

Let us first discuss the highlevel idea of the proof. For the sake of intuition assume that k � lgn
ε . Then we

may note that λkj+1 ≤ λk1(1 − ε)k ≤ λk1( 1
n2 ). It follows that

∑n
i=j+1 λ

2k
i ≤ nλ2kj ≤

λ2k
1

n , meaning the total

contribution of eigenvalues after j in the spectral decomposition of M2k is very small – if k is large, then
y is essentially in the span of v1, . . . , vj , and that is all I need to prove the claim, because all of the first j
eigenvalues are at least (1− ε)λ1.

Next, we do the algebra. First, let us expand the spectral decomposition of M2k+1:

xTM2k+1x = xT

(
n∑
i=1

λ2k+1
i viv

T
i

)
x

=

n∑
i=1

λ2k+1
i 〈vi, x〉2

≥
j∑
i=1

λ2k+1
i 〈vi, x〉2

≥
j∑
i=1

(1− ε)λ1λ2ki 〈vi, x〉2

where in the last inequality we use the fact that λ1, . . . , λj ≥ (1 − ε)λ1. So this gives us a lower bound for
xTM2k+1x.



15-4 Lecture 15: Power Method, Spectral Sparsification

Next, we derive an upper bound for xTM2kx. Putting these together we will lower bound the ratio xTM2k+1x
xTM2kx

.
Proceeding similarly to the above, we note

xTM2kx =

n∑
i=1

λ2ki 〈vi, x〉2

=

j∑
i=1

λ2ki 〈vi, x〉2 +

n∑
i=j+1

λ2ki 〈vi, x〉2

≤
j∑
i=1

λ2ki 〈vi, x〉2 + (1− ε)2kλ2k1
n∑

i=j+1

〈vi, x〉2

≤
j∑
i=1

λ2ki 〈vi, x〉2 + (1− ε)2kλ2k1 ‖x‖2

where in the last inequality we used that λj+1, . . . , λn ≤ (1− ε)λ1 and that
∑n
i=j+1〈vi, x〉2 ≤ ‖x‖2, since we

are projecting x onto a set of at most n orthonormal vectors.

Now, substituting these bounds, we get

yTMky

yT y
=
xTM2k+1x

xTM2kx
≥

(1− ε)λ1
∑j
i=1 λ

2k
i 〈vi, x〉2∑j

i=1 λ
2k
i 〈vi, x〉2 + (1− ε)2kλ2k1 ‖x‖2

=
(1− ε)λ1

1 +
(1−ε)2kλ2k

1 ‖x‖2∑j
i=1 λ

2k
i 〈vi,x〉2

≥ (1− ε)λ1
1 +

(1−ε)2kλ2k
1 ‖x‖2

λ2k
1 〈v1,x〉2

≥ (1− ε)λ1
1 + (1− ε)2k ‖x‖

2

〈x,v1〉2
.

as desired

15.2 Spectral Sparsifiers

For two symmetric matrix A,B ∈ Rn×n we write

A � B

iff B −A � 0, i.e., B −A is a PSD matrix. In other words, A � B iff for any vector x ∈ Rn,

xTAx ≤ xTBx

Let λ1 ≤ · · · ≤ λn be the eigenvalues of A and λ̃1 ≤ · · · ≤ λ̃n be the eigenvalues of B. It follows that if
A � B, then for all i, λi ≤ λ̃i.

Definition 15.9. Given a graph G = (V,E) and ε > 0, we say a (weighted) graph H = (V,E′) is a
1± ε-spectral sparisifier of G if

(1− ε)LG � LH � (1 + ε)LG.
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Figure 15.1: Barbell Graph

Ideally, we want H to be a subgraph of G which has much fewer edges than G. An immediate consequence
of the above definition is that all eigenvalues of H approximate eigenvalues of H up to multiplicative 1± ε
error.

It is also not hard to see that if H is a 1± ε-spectral sparisifer of G then it preserves the size of all cuts of G.
In particular, for a set S ⊆ V , recall 1S is the indicator vector of the set S. It follows that for a graph G,

1SLG1S =
∑
i∼j

(1Si − 1Sj )2 =
∑
i∼j

I [|{i, j} ∩ S| = 1] = 2|E(S, S)|

So, if H is a 1± ε-spectral sparsifier of G we have

(1− ε)1SLG1S ≤ 1SLH1S ≤ (1 + ε)1SLG1S ,

so the (weighted) size of every cut in H is within 1± ε multiplicative factor of the same cut in G.

Theorem 15.10 (Speilman-Srivastava). For every graph G = (V,E) and ε > 0, there is a weighted graph H
that is a subgraph of G such that H is a 1± ε-spectral sparsifier of G and that H has at most O(n log n/ε2)
many edges.

The first idea that come to mind is to construct an unbiased estimator: Let X be a random matrix defined
as follows: For every edge e ∈ E, X = Le/pe with probability pe, Then, observe that

E [X] =
∑
e

pe
Le
pe

=
∑
e

Le = LG.

So, X is an unbiased estimator. And, the main question is how to choose the probabilities such that
concentration bounds can kick in and imply X ≈ E [X].

Let us start with a simple case of a complete graph. If G is a complete graph, we can simply let pe = 1/
(
n
2

)
for all edges. It then follows that O(n log n/ε2) many samples are enough to approximate the complete
graph. However, it turns out that a uniform distribution does not necessarily work out in a general graph.
For example, if G is a Barbell graph, i.e., union of two Kn connected by an edge (see Figure 15.1), then, if
we want to down-size G to O(n log n) edges we need to let pe = O(log n)/n for all edges, but then the single
edge connecting the two complete graphs won’t be chosen with high probability. So, H is disconnected with
high probability and it cannot be a spectral sparsifier of G for any ε < 1. In the rest of this section we will
see how to choose the edge probabilities pe.

15.2.1 Reduction to Isotropic Case

First, it turns out that we can reduce the graph sparsification problem to a linear algebraic problem. First, let
us recall the generalized eigenvalue problem. In the generalized eigenvalue problem we are given a symmetric
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matrix A and a PSD matrix B and we want to find

max
x

xTAx

xTBx

In the special case that B is the identity matrix, the solution of the above problem is exactly the largest
eigenvector of A. We can solve the above problem by reducing it to an eigenvalue problem.

max
x

xTAx

xTBx
= max

x

xTB1/2B−1/2AB−1/2B1/2x

xTB1/2B1/2x
= max
x:y=B1/2x

yTB−1/2AB−1/2y

yT y
= max

y

yTB−1/2AB−1/2y

yT y

So, to find the solution to the generalized eigenvalue problem it is enough to find the largest eigenvector y
of the matrix B−1/2AB−1/2 and then let x = B−1/2y. Note that, here we are using the fact that B is PSD;
otherwise B−1/2 is not well defined.

Now, let us go back to the spectral sparsifier problem. Suppose H is a 1 ± ε-spectral sparsifier of G. It
follows that for all x ∈ Rn.

1− ε ≤ xTLHx

xTLGx
≤ 1 + ε

By a similar analogy, it follows that for all y,

1− ε ≤
yTL

−1/2
G LHL

−1/2
G y

yT y
≤ 1 + ε

So, the above inequality implies that the matrix L
−1/2
G LHL

−1/2
G is approximately equal to the identity matrix.

Remark 15.11. There is a technical problem here: since LG has a zero eigenvalue the inverse of LG is
not well-defined. In the above calculation, we take the inverse with respect to positive eigenvalues of G;

in particular if LG =
∑
i λiviv

T
i , we let L

−1/2
G =

∑
i:λi>0

1√
λi
viv

T
i . We ignore this fact in the rest of our

calculations for the simplicity of the argument.

Now, we reformulate the spectral sparsification problem as follows:

Theorem 15.12. Given n× n PSD matrices, E1, . . . , Em such that

m∑
i=1

Ei = I,

For any ε > 0, there is a subset S of them of size O(n log n/ε2) and a set of weights wi for each i ∈ S such
that

(1− ε)I �
∑
i∈S

wiEi � (1 + ε)I

Let us discuss how we can reduce the sparsification problem to the above theorem. Say our graph G has m
edges. For edge ei define

Ei = L
−1/2
G LeiL

−1/2
G .

First, observe that each Ei is a PSD matrix, and furthermore,

m∑
i=1

Ei =

m∑
i=1

L
−1/2
G LeiL

−1/2
G = L

−1/2
G

(
m∑
i=1

Lei

)
L
−1/2
G = L

−1/2
G LGL

−1/2
G = I.

So, roughly speaking by multiplying the Laplacians of the edges of G by L
−1/2
G on both sides we are normal-

izing the space such that every direction look the same. We are reducing the graph spectral sparsification
problem to a linear algebraic problem of finding a sparsifier of the sum of PSD matrices that add up to the
identity matrix.
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15.2.2 Finding the Spectral Sparsifier

Now, as before, let

X =
Ei
pi

with probability pi. Similar to before, E [X] = I. So, X is an unbiased estimator. To prove the concentration
we used the following generalization of the Chernoff bound which is known as matrix Chernoff bound

Theorem 15.13. Let X be a random n× n PSD matrix. Suppose that X � αE [X] with probability 1. Let
X1, . . . , Xk be independent copies of X, then for any ε > 0,

P
[
(1− ε)E [X] � 1

k
(X1 + · · ·+Xk) � (1 + ε)

]
≥ 1− 2ne−ε

2k/4α.

So, this says that to prove Theorem 15.12 it is enough to choose k = O(α log n/ε2) many copies of X. Finally,
to finish the proof we need to choose the probabilities pi such that α ≤ O(n).

First, suppose we let pi be uniform, i.e., pi = 1/m for all i. Then, we need to choose α such that for all i,

Ei
1/m

� αI.

But it turns out that in the worst case we have to let α = m.

The idea is to let pi ∝ Tr(Ei). Let us first find the normalizing constant: Suppose pi = β Tr(Ei). Then,

∑
i

pi = β
∑
i

Tr(Ei) = β Tr

(∑
i

Ei

)
= βn

So, we should let β = 1/n. It follows that pi = β Tr(Ei) = Tr(Ei)/n.

Now, we claim that for all i,
Ei

Tr(Ei)/n
� αI

for α = n. This will complete the proof of Theorem 15.12. To show the above it is enough to show

Ei
Tr(Ei)

� I

To show this we only use the fact that all eigenvalues of Ei are in the range [0, 1] (this is true because Ei is
PSD, and

∑
j Ej = I). So, it remains to prove the above inequality. Say Ei =

∑
j λjvjv

T
j . For any arbitrary

vector x ∈ Rn,

xT
Ei

Tr(Ei)
x =

∑
j λj〈x, vj〉2∑

j λj
≤ max

j
〈x, vj〉2 ≤ ‖x‖2 = xT Ix.

15.2.3 Back to Spectral Sparsifiation

In the previous section we saw that we should choose each Ei with probability Tr(Ei)/n. Translating this

back to the setting of graph sparsification; recall that for edge ei, Ei = L
−1/2
G LeiL

−1/2
G . So, we should sample

every edge e of G with probability

pe =
Tr(L

−1/2
G LeL

−1/2
G )

n
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The quantity

Tr(L
−1/2
G LeL

−1/2
G ) = bTe L

−1
G be

is called the effective resistance of the edge e; here for an edge e = {u, v}, be = 1u − 1v is the vector which
is +1 at one endpoint of e and −1 at the other endpoint and 0 everywhere else. It is very well understood
and there are fast algorithms to estimate it; one can also compute the inverse of the Laplacian and compute
the effective resistance of all edges immediately.

The following simple algorithm can be used to construct a 1± ε-spectral sparsifier of G:

1. For i = 1 to O(n log n/ε2)

2. Sample each edge e of G with probability pe = Tr(L
−1/2
G LeL

−1/2
G )/n. If the edge e is sampled weight

it by 1/pe.
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