
CSE 521: Design and Analysis of Algorithms I Fall 2019

Lecture 6: Locally Sensitive Hashing
Lecturer: Shayan Oveis Gharan 10/14/2019

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will discuss a reduction of the nearest neighbor search (NNS) problem to that of finding
a locally sensitive hashing function as invented in [IM98].

6.1 Introduction to the Nearest Neighbor Search Problem

The NNS problem is as follows: Suppose P ⊂ Rd is a set of n points. Given any q ∈ Rd find

min
p∈P

dist(p, q).

The distance here could be any arbitrary distance function; in this lecture we will talk more about `1 or `2
distances even though the machinery that we describe can be generalized to a variety of distance functions.
Some applications include: web search, document search, or clustering - these are all situations in which
knowing how “far” an object is from other objects tells us important information.

A naive solution would be to store all of the points and simply loop over all p ∈ P to find the minimum
distance. This takes O(n · d) time and space, which is not good. Ideally we would like to have a query time
that is sublinear in n; we may allow for a super-linear amount of memory to store the data structure.

If d = 1 we could pre-process the points by sorting them and then finding the distance minimizing point
would simply reduce to binary searching for p in a list, and returning the closest of the two adjacent elements
in the list. This takes O(log n) query time and O(n) bits of memory.

Extending the pre-processing idea to higher dimensions d leads to what are known as k-d trees: here the
idea is to partition the space by using coordinate-aligned planes chosen appropriately for the data at hand.
Unfortunately k-d trees generally fail to beat the naive approach when d = Ω(log n). It turns out that in all
known approaches the size of the data structure (or the query-time) grows exponentially in d.

The main underlying difficulty is the well-known facts in high dimensions, which is usually referred to as the
“curse of dimensionality”. Suppose we partition the space by a grid where each cell is a cube of side length
a. Then, a cube of side length a randomly positioned in the space intersects 2d many cells of the grid. This
phenomenon essentially implies that a NNS algorithm based on kd-trees takes time O(2d) in expectation to
look into all of the nearby cells of a query point to find the closes point.

6.2 Reducing to Approximate Nearest Neighbors Search

We now describe the idea of [IM98]. Firstly, instead of solving the exact problem we will look for approximate
solutions. That is instead of finding the closest point p to a query point q, we are happy to find a point p
such that

dist(p, q) ≤ c ·min
s∈P

dist(s, q),

6-1

6-2 Lecture 6: Locally Sensitive Hashing

where c > 1 is the approximation factor of in our algorithm. As we will see the memory and the query time
of our algorithm will be a function of c.

So, let us define the approximate NNS problem. For c > 1, r > 0, the ANNS(c, r) is defined as follows: Given
a set point of points P , construct a data structure such that for any query point q, if there is a point p such
that dist(p, q) ≤ r, it returns a point p′ such that

dist(p′, q) ≤ c · r.

If there is no such p, then we return nothing.

It is not hard to see that we can give a c approximation to the nearest neighbor search problem using the
solution to ANNS(c, r). In fact, all we need to do is to guess minp∈P dist(p, q) up to a multiplicative factor
of 1± ε. By an approporiate scaling assume

diam(P) = max
p,p′∈P

dist(p, p′) ≤ 1

Also, suppose δ > 0 is the minimum possible distance for all pairs of points in our dataset. Roughly speaking,
1/δ can represent the bit precision of the data points stored in our system. We solve ANNS(c(1− ε), r) for
the following values of r,

δ, (1 + ε)δ), (1 + ε)2δ, . . . , 1.

We report the minimal value of r for which we find a point at distance c(1− ε) of q. This reduction imposes
an additional O(log 1

δ) overhead to the query time and the memory of our algorithm. This is because we
need to maintain a separate data structure for each possible value of r in the above sequence.

6.3 Locally Sensitive Hashing functions

From now on we only focus on the ANNS(c, r). The main interesting idea of [IM98] is a reduction from
this problem to the design of a locally sensitive hash (LSH) function. Roughly speaking, an LSH is a hash
function which is sensitive to distance. Ideally, we would like to have a hash function that maps “close points”
to the same value with a high probability and maps “far points” to different values. To be more precise, if
dist(p, q) ≤ r we want them to map to the same value, with a high probability, and if dist(p, q) > c · r we
want them to map to different values with a high probability. Let us give a formal definition

Suppose we have a family a functions H = {h : P → Z} of maps from our points P to the set of integers Z;
we say H is (c, c · r, p1, p2)-LSH if: for all p, q ∈ P :

dist(p, q) 6 r =⇒ P [h(p) = h(q)] > p1

dist(p, q) > c · r =⇒ P [h(p) = h(q)] 6 p2

where the probabilities are over h ∼ H. Ideally, we want to have p1 � p2, but as we see this highly depends
on the magnitude of c. The main idea in the reduction of [IM98] is that even if p1 is slightly larger than p2
it is possible to use many independently chosen functions from H to boost p1 to a number close to 1 and p2
to 1/n.

Before describing the reduction, let us give an example of LSH for binary vectors. We will see several
examples in PS3. Suppose P ⊆ {0, 1}d with Manhattan distance function

dist(p, q) = ‖p− q‖1,

i.e. dist(p, q) is the number of coordinates at which p and q have different bits. Consider the family
H := {hi}di=1 where

hi(p) = pi

Lecture 6: Locally Sensitive Hashing 6-3

is the ith bit of p. Then observe that for each p, q ∈ {0, 1}d

P [h(p) = h(q)] =
bits in common

total bits
=
d− ‖p− q‖1

d
= 1− ‖p− q‖1

d
.

Therefore,

P [h(p) = h(q)] =

{
≥ 1− r

d ≈ e
−r/d if dist(p, q) ≤ r

≤ 1− c·r
d ≈ e

−c·r/d if dist(p, q) ≥ c · r
.

So, H is (c, c · r, e−r/d, e−c·r/d)-LSH.

6.4 Reduction to LSH

Now let us discuss the reduction from ANNS(c, r) to LSH? Well if we had a (r, c · r, p1, p2)-LSH family such
that p1 ≈ 1 and p2 ≈ 0 we could solve the problem as follows: We start by choosing a function h ∼ H
uniformly at random and we store h(p) for all points in P . Given a query point q, we compute h(q) and see
if there is any point p ∈ P where h(p) = h(q). Note that we can do the lookup in O(1) time using a hash
table as we discussed in previous lectures. If there is no such point p, then with high probability there is no
point at distance c · r of q. Thus we only need to show that if we are given an (r, c · r, p1, p2)-LSH family
with the assumption p1 > p2, then we can boost it to get p1 ≈ 1 and p2 ≈ 0.

We do this boosting in two steps. First, we just try to make p2 small. To do this it suffices to take k
independent hash functions from H, and hash each point p ∈ P to a k-dimensional vector,

h(p) = [h1(p), . . . , hk(p)].

Then, by the independence of h1, . . . , hk, for any two points p, q,

dist(p, q) > c · r =⇒ P [h(p) = h(q)] 6 pk2 .

But this doesn’t help us increase p1. In fact, the above hash function maps two close points to the same
vector with probability at least pk1 . How do we do this? We choose ` independent copies of the above
k-dimensional hash function, f1, f2, . . . , f`, for a sufficiently large `, with high probability there is an i such
that fi(p) = fi(q). Assume,

f1(p) = [h1,1(p), . . . , h1,k(p)]

...

f`(p) = [h`,1(p), . . . , h`,k(p)]

It follows that if dist(p, q) ≤ r, then

P [∃i | fi(p) = fi(q)] = 1− P [∀i, fi(p) 6= fi(q)]

= 1− P [fi(p) 6= fi(q)]
`

> 1− (1− pk1)`

The details of the algorithm is described in Equation 6.4.

Next, we describe how to tune the parameters k, `. We choose k such that pk2 = 1/n. Also, assume

p1 = pρ2, (6.1)

6-4 Lecture 6: Locally Sensitive Hashing

for some ρ < 1. As we will see ρ is the main parameter that determines the running time/memory of our
algorithm. We choose ` = Θn−ρ lnn).

Fix a query point q; it follows by linearity of expectation that for any i,

P [∃p : dist(p, q) > c · r, fi(p) = fi(q)] = n · pk2 ≤ 1.

Summing up over all i, in expectation there are O(`) points in our data set which map to the same hash
value as q for some i. This implies an overhead of O(`) in the query time.

On the other hand, if dist(p, q) ≤ r for some p ∈ P , then

P [∃i : fi(p) = fi(q)] ≥ 1− (1− pk1)` = 1− (1− pρk2)` = 1− (1− n−ρ)` ≈ 1− e`n
−ρ

= 1− 1/n.

In summary, for any point p at distance at most r, our algorithm outputs p with probability at least 1−1/n.
The algorithm in expectation had O(` · d) overhead to examine O(`) points at distance more than c · r form
q.

Algorithm 1 LSH Algorithm

Preprocessing:
Choose k · `, h1,1, . . . , h`,k functions uniformly at random from H.
Construct ` hash tables; for all 1 ≤ i ≤ ` store fi(p) = (hi,1(p), . . . , hi,k(p)) for all p ∈ P in the i-th table.
For all i, sort all values of {fi(p) : p ∈ P}.

Query(q):
for i = 1→ ` do

Compute fi(q).
Find all points p where fi(p) = fi(q) using a binary search on table i. For all such points if dist(p, q) ≤

c · r, output p.
end for

6.5 Space and Time Complexity of the Reduction

The algorithm needs to maintain O(`) hash tables. In each hash table we need to store n = |P | hash values
where each value is a k dimensional vector. So, the space complexity of the algorithm is

O(` · n · k) = O(n1+ρ
log n

log 1
p2

).

For any query point q we need to spend The query time is O(` · k) time to compute fi(q) for all 1 ≤ i ≤ `.
For any candidate close point p we spend O(d) time to calculate dist(p, q). Let |O| be size of the output,
i.e., the number of points at distance c · r from q. In expectation we examine O(`) far points that we don’t
output. So, the query time is O(d(`+ |O|) in expectation. So, the query time is

O(d(`+ |O|) + ` · k) = O

(
nρ

(
d+

log n

log 1
p2

)
+ |O|d

)
.

Ignoring lower order terms, in particular the size of the output and the dimension, the algorithm runs with
memory O(n1+ρ) and querytime O(nρ).

Lecture 6: Locally Sensitive Hashing 6-5

Let us calculate ρ for the binary vector example that we described at the beginning. Recall that ρ is chosen
such that p1 = pρ2, so

ρ =
ln 1

p1

ln 1
p2

=
r/d

c · r/d
=

1

c
.

For example, if c = 2, we need O(n1.5) to store hash tables and we have O(
√
n) query time. As we see the

query time (and memory) get significantly better as we increase c. In practice, we may tune the parameter
c based on the amount of resources available to us.

It has been a very active area of research to design the best of LSH functions for many metrics. In PS3 we
design LSH for `1, `2 distance where ρ = 1/c.

References

[IM98] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards removing the curse of dimen-
sionality”. In: STOC. ACM. 1998, pp. 604–613 (cit. on pp. 6-1, 6-2).

	Introduction to the Nearest Neighbor Search Problem
	Reducing to Approximate Nearest Neighbors Search
	Locally Sensitive Hashing functions
	Reduction to LSH
	Space and Time Complexity of the Reduction

