CSE 521: Design and Analysis of Algorithms I Fall 2019

Lecture 6: Locally Sensitive Hashing
Lecturer: Shayan Oveis Gharan 10/14/2019

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will discuss a reduction of the nearest neighbor search (NNS) problem to that of finding
a locally sensitive hashing function as invented in [IM98].

6.1 Introduction to the Nearest Neighbor Search Problem

The NNS problem is as follows: Suppose P C R is a set of n points. Given any q € R? find

in dist(p, q).
min dis (p;q)

The distance here could be any arbitrary distance function; in this lecture we will talk more about ¢; or £
distances even though the machinery that we describe can be generalized to a variety of distance functions.
Some applications include: web search, document search, or clustering - these are all situations in which
knowing how “far” an object is from other objects tells us important information.

A naive solution would be to store all of the points and simply loop over all p € P to find the minimum
distance. This takes O(n - d) time and space, which is not good. Ideally we would like to have a query time
that is sublinear in n; we may allow for a super-linear amount of memory to store the data structure.

If d = 1 we could pre-process the points by sorting them and then finding the distance minimizing point
would simply reduce to binary searching for p in a list, and returning the closest of the two adjacent elements
in the list. This takes O(logn) query time and O(n) bits of memory.

Extending the pre-processing idea to higher dimensions d leads to what are known as k-d trees: here the
idea is to partition the space by using coordinate-aligned planes chosen appropriately for the data at hand.
Unfortunately k-d trees generally fail to beat the naive approach when d = Q(logn). It turns out that in all
known approaches the size of the data structure (or the query-time) grows exponentially in d.

The main underlying difficulty is the well-known facts in high dimensions, which is usually referred to as the
“curse of dimensionality”. Suppose we partition the space by a grid where each cell is a cube of side length
a. Then, a cube of side length a randomly positioned in the space intersects 2% many cells of the grid. This
phenomenon essentially implies that a NNS algorithm based on kd-trees takes time O(2?) in expectation to
look into all of the nearby cells of a query point to find the closes point.

6.2 Reducing to Approximate Nearest Neighbors Search

We now describe the idea of [IM98]. Firstly, instead of solving the exact problem we will look for approximate
solutions. That is instead of finding the closest point p to a query point ¢, we are happy to find a point p
such that

dist(p, ¢) < ¢- mindist(s, q),
seEP

6-1

6-2 Lecture 6: Locally Sensitive Hashing

where ¢ > 1 is the approximation factor of in our algorithm. As we will see the memory and the query time
of our algorithm will be a function of c.

So, let us define the approximate NNS problem. For ¢ > 1,7 > 0, the ANNS(¢, r) is defined as follows: Given
a set point of points P, construct a data structure such that for any query point ¢, if there is a point p such
that dist(p, q) < r, it returns a point p’ such that

dist(p’,q) < c-r.
If there is no such p, then we return nothing.

It is not hard to see that we can give a ¢ approximation to the nearest neighbor search problem using the
solution to ANNS(c,r). In fact, all we need to do is to guess min,¢ p dist(p, ¢) up to a multiplicative factor
of 1+ €. By an approporiate scaling assume
diam(P) = max dist(p,p’) <1
p,p'€P
Also, suppose § > 0 is the minimum possible distance for all pairs of points in our dataset. Roughly speaking,
1/6 can represent the bit precision of the data points stored in our system. We solve ANNS(c(1 — ¢),) for

the following values of r,
5, (1+€)d),(1+€)%5,...,1.

We report the minimal value of r for which we find a point at distance ¢(1 — ¢€) of g. This reduction imposes
an additional O(log %) overhead to the query time and the memory of our algorithm. This is because we
need to maintain a separate data structure for each possible value of r in the above sequence.

6.3 Locally Sensitive Hashing functions

From now on we only focus on the ANNS(c,r). The main interesting idea of [IM98] is a reduction from
this problem to the design of a locally sensitive hash (LSH) function. Roughly speaking, an LSH is a hash
function which is sensitive to distance. Ideally, we would like to have a hash function that maps “close points”
to the same value with a high probability and maps “far points” to different values. To be more precise, if
dist(p, ¢) < r we want them to map to the same value, with a high probability, and if dist(p,q) > ¢ r we
want them to map to different values with a high probability. Let us give a formal definition

Suppose we have a family a functions H = {h: P — Z} of maps from our points P to the set of integers Z;
we say H is (¢, ¢ r,p1,p2)-LSH if: for all p,q € P:

dist(p,q) <r = P[h(p) = h(q)] = ;1
dist(p,q) = c-r = P[h(p) = h(q)

where the probabilities are over h ~ H. Ideally, we want to have p; > ps, but as we see this highly depends
on the magnitude of ¢. The main idea in the reduction of [IM98] is that even if p; is slightly larger than py
it is possible to use many independently chosen functions from H to boost p; to a number close to 1 and ps
to 1/n.

N

D2

Before describing the reduction, let us give an example of LSH for binary vectors. We will see several
examples in PS3. Suppose P C {0, 1}¢ with Manhattan distance function
dist(p, q) = [lp — qll1,

i.e. dist(p,q) is the number of coordinates at which p and ¢ have different bits. Consider the family
H := {h;}%_ | where
hi(p) = p;

Lecture 6: Locally Sensitive Hashing 6-3

is the ith bit of p. Then observe that for each p,q € {0,1}¢

bits in common d — ||p — q||1 llp — qll1
Plh(p) =h = S P 210
[h(p) = hla)] = total bits d d
Therefore,
>1—L e/ if dist(p,q) <r
Pln) = h@] == T8 =T
- ~e if dist(p,q) >c-r

So, H is (¢, c-r, e/ e=7/4).LSH.

6.4 Reduction to LSH

Now let us discuss the reduction from ANNS(¢,r) to LSH? Well if we had a (r,c- 7, p1, p2)-LSH family such
that p; = 1 and py =~ 0 we could solve the problem as follows: We start by choosing a function h ~ H
uniformly at random and we store h(p) for all points in P. Given a query point ¢, we compute h(q) and see
if there is any point p € P where h(p) = h(g). Note that we can do the lookup in O(1) time using a hash
table as we discussed in previous lectures. If there is no such point p, then with high probability there is no
point at distance ¢ - r of ¢. Thus we only need to show that if we are given an (r,c - r,p1, p2)-LSH family
with the assumption p; > p2, then we can boost it to get p; ~ 1 and ps = 0.

We do this boosting in two steps. First, we just try to make ps small. To do this it suffices to take k
independent hash functions from #, and hash each point p € P to a k-dimensional vector,

h(p) = [h1(p),.- ., hi(p)]-
Then, by the independence of hy, ..., hy, for any two points p, g,
dist(p,q) = ¢-r = P[h(p) = h(q)] < p5.

But this doesn’t help us increase p;. In fact, the above hash function maps two close points to the same
vector with probability at least p’f. How do we do this? We choose ¢ independent copies of the above
k-dimensional hash function, f1, fa,..., f¢, for a sufficiently large ¢, with high probability there is an i such
that f;(p) = fi(q). Assume,

fi(p) = [h1a(p), .- h1k(p)]

fe(@) = [hea(p), -, ha(p)]

It follows that if dist(p, q) < r, then

P[3i | fi(p) = fi(q)]

1 =P Vi, fi(p) # fi(q)]
L= P[fi(p) # fila)]"
1= (1= p))

WV

The details of the algorithm is described in Equation 6.4.

Next, we describe how to tune the parameters k, £. We choose k such that p§ = 1/n. Also, assume

p1 = Db, (6.1)

6-4 Lecture 6: Locally Sensitive Hashing

for some p < 1. As we will see p is the main parameter that determines the running time/memory of our
algorithm. We choose £ = ©n~"1Inn).

Fix a query point g; it follows by linearity of expectation that for any 4,

P [3p : dist(p, q) > -7, fi(p) = fi(g)] =n-ph < 1.

Summing up over all ¢, in expectation there are O(¢) points in our data set which map to the same hash
value as ¢ for some ¢. This implies an overhead of O(¢) in the query time.

On the other hand, if dist(p, ¢) < r for some p € P, then
P[Ei: filp) = filg)) 21— (1—p}) =1—-(1-pt") =1-(1-n")m1-e""=1-1/n.

In summary, for any point p at distance at most r, our algorithm outputs p with probability at least 1 —1/n.
The algorithm in expectation had O(¢ - d) overhead to examine O(¢) points at distance more than c-r form

q.

Algorithm 1 LSH Algorithm
Preprocessing:
Choose k- ¢, hy1,...,he) functions uniformly at random from .
Construct ¢ hash tables; for all 1 <37 < ¢ store f;(p) = (hi1(p), ..., hik(p)) for all p € P in the i-th table.
For all 4, sort all values of {f;(p) : p € P}.
Query(q):
fori=1—/do
Compute f;(q).
Find all points p where f;(p) = fi(q) using a binary search on table i. For all such points if dist(p, q) <
c-r,output p.
end for

6.5 Space and Time Complexity of the Reduction

The algorithm needs to maintain O(¢) hash tables. In each hash table we need to store n = |P| hash values
where each value is a k dimensional vector. So, the space complexity of the algorithm is

1
O n-k)=0(mtr =81
logp—2

For any query point ¢ we need to spend The query time is O({ - k) time to compute f;(q) for all 1 < ¢ < £.
For any candidate close point p we spend O(d) time to calculate dist(p, q). Let |O| be size of the output,
i.e., the number of points at distance ¢ - r from ¢. In expectation we examine O(¥) far points that we don’t
output. So, the query time is O(d(¢ + |O|) in expectation. So, the query time is

log p%

O@d(t+0) +£-k) =0 <np <d+ logn) + |Od> :

Ignoring lower order terms, in particular the size of the output and the dimension, the algorithm runs with
memory O(n'*?) and querytime O(n?).

Lecture 6: Locally Sensitive Hashing 6-5

Let us calculate p for the binary vector example that we described at the beginning. Recall that p is chosen

such that p; = pb, so
lnp% _or/d 1

=B = — ——
In - c-r/d ¢

For example, if ¢ = 2, we need O(n'®) to store hash tables and we have O(y/n) query time. As we see the
query time (and memory) get significantly better as we increase c¢. In practice, we may tune the parameter
¢ based on the amount of resources available to us.

It has been a very active area of research to design the best of LSH functions for many metrics. In PS3 we
design LSH for ¢, ¢ distance where p =1/c.

References

[IM98] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards removing the curse of dimen-
sionality”. In: STOC. ACM. 1998, pp. 604-613 (cit. on pp. 6-1, 6-2).

	Introduction to the Nearest Neighbor Search Problem
	Reducing to Approximate Nearest Neighbors Search
	Locally Sensitive Hashing functions
	Reduction to LSH
	Space and Time Complexity of the Reduction

