
CSE 521: Design and Analysis of Algorithms I Fall 2019

Lecture 9: Schwartz-Zippel Lemma, Perfect Matching
Lecturer: Shayan Oveis Gharan 10/25/2019

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture, we will discuss polynomial identity testing and its applications.

1.1 Polynomial Identity Testing and Schwartz-Zippel Lemma

Given two polynomials p(x1, . . . , xn) and q(x1, . . . , xn), we’d like to find out whether p ≡ q, i.e. whether
they produce identical outputs given any input x, if

p(x1, . . . , xn)− q(x1, . . . , xn) = 0

is true for all x ∈ Rn.

Definition 1.1. A monomial is a function defined as the product of powers of variables with nonnegative
exponents. A constant coefficient may be present. The degree of a monomial is the sum of all the exponents
involved.

Definition 1.2. A polynomial is a function defined as the sum of monomials. In a polynomial, each
component monomial is also referred to as a term. The degree of a polynomial is the largest degree of any
monomial with nonzero coefficient.

Example 1.3. Some examples of polynomials:

• 2x + 3xy2 is a polynomial of two variables with degree 3. It has two monomials x with coefficient 2
and xy2 with coefficient 3.

• 0x3 + 4x2 + 3x− 1 is a polynomial of a single variable with degree 2.

• The determinant of a matrix A = [Ai,j ]n×n is a polynomial of n2 variables with degree n:

det(A) =
∑

σ:[n]→[n]

sgn(σ)

n∏
i=1

Ai,σ(i),

where σ is a permutation defined on [n] = {1, . . . , n} and sgn(σ) is either +1 or −1 depending on the
nature of the permutation σ.

One naive way to test the identity of p and q is to simply make the list of all monomials for each polynomial
and compare the resulting lists. Unfortunately, it is often impratical to do so. For instance, the determinant
function consists of n! terms, so listing them would cost us exponential time. So we assume that we are given
oracle access to polynomials p, q, i.e., that we can query the oracle for a specific input x and it outputs
p(x), q(x). For instance, if we assign specific values to all terms in matrix Ai,j = xi,j for all i, j, we can
compute the determinant in O(n3) time using the LU decomposition. The determinant example inspires the
following formulation:

1-1



1-2 Lecture 9: Schwartz-Zippel Lemma, Perfect Matching

Definition 1.4 (Polynomial Identity Testing). Given a polynomial p defined over a a set of variables
x1, . . . , xn, we’d like to determine whether p ≡ 0. We are only given oracle access: no individual monomial
of p is known, but we may evaluate p at any specific input x.

Example 1.5. First consider a polynomial of a single variable of degree n

p(x) = a0x
n + a1x

n−1 + . . .+ an−1x+ an.

Is p identical to zero? It suffices to evaluate p at (n+ 1) distinct values of x, e.g.

p(1), p(2), . . . , p(n+ 1).

If any of them evaluates to nonzero, p is clearly not identical to zero. If, on the other hand, all of the (n+ 1)
values are zero, then p is indeed identical to zero. Why is that? By the Fundamental Theorem of Algebra,
any nonzero polynomial of degree d has at most d real roots. If p were not identical to zero, then since it has
degree n, it would have at most n real roots. Since p(1) = p(2) = · · · = p(n+ 1) = 0, p has at least (n+ 1)
roots and thus p must be identically zero.

The multivariate case is not so simple, as multivariate polynomials may have infinitely many roots. For
instance, the polynomial

x2 − y

has uncountably many roots, namely any (x, y) satisfying y =
√
x. So even with an infinitely long list of

roots for p, we cannot know for certain whether p is identically zero or not. All hope is not lost, however;
it turns out that it’s quite unlikely for any nonzero polynomial to evaluate to zero, provided that inputs are
selected randomly:

Lemma 1.6 (The Schwartz-Zippel Lemma). Let p(x1, . . . , xn) be a nonzero polynomial of n variables with
degree d. Let S be a finite subset of R, with at least d elements in it. If we assign x1, . . . , xn values from S
independently and uniformly at random, then

P[p(x1, . . . , xn) = 0] ≤ d

|S|
.

This is an amazing result — all it takes is to pick a set S and try random inputs. If the polynomial p
evaluates to zero, it is highly unlikely that p is nonzero: the probability that p evaluates to zero when it’s
not identically zero is quite small, especially when |S| � d. What’s also amazing is that there is (yet)
no deterministic counterpart to this randomized procedure. In fact, finding a deterministic algorithm for
polynomial identity testing would lead to many interesting results, with impact akin to P=NP [KI04].

Before jumping to the full proof of the Schwartz-Zippel Lemma, let’s first prove a simpler instance.

1.2 Matrix Identity Testing

Suppose we are given three n× n matrices A, B, and C. We’d like to test whether AB = C. Yes, we could
simply multiply A by B, but that would cost O(n3) time. It turns out we can do better, by turning to a
randomized approach.

Let S be a finite subset of R, and let’s build a random vector x ∈ Rn by choosing each coordinate xi
independently and uniformly at random from S:

xi ∼ Uniform(S)



Lecture 9: Schwartz-Zippel Lemma, Perfect Matching 1-3

We test whether ABx = Cx; if ABx = Cx, then we conclude AB = C. This procedure costs at most O(n2),
involving three matrix-vector multiplications. This is because ABx = A(Bx). The cost is even lower when
the matrices are sparse, in fact it is simply linear in the number of nonzero entries of A,B,C.

Now how likely is the false positive under this regime? That is, if AB 6= C, how likely is the outcome
ABx = Cx? We will show that the false positive is highly unlikely:

Theorem 1.7. If AB 6= C, then

Pxi∼S [ABx 6= Cx] ≥ 1− 1

|S|
.

This theorem can be directly proven by an application of Lemma 1.6. But, here we give a direct proof. It
turns out that the proof below is in a sense similar to the proof of Lemma 1.6, but it is tuned to the case
when p, q have degree 1.

Proof. First, let’s write AB and C in terms of row vectors:

AB =

 a1
...
an

 , C =

 c1
...
cn

 .
Since AB 6= C, they should differ in at least one row: ai 6= ci for some i. We will show that the inner
products 〈ai, x〉 and 〈ci, x〉 are most likely different:

P[〈ai, x〉 6= 〈ci, x〉] ≥ 1− 1

|S|

Notice that 〈ai, x〉 and 〈ci, x〉 are really 1-degree polynomials of variables x1, . . . xn, so we could simply apply
Schwartz-Zippel Lemma and be done with the proof. But for the sake of learning, let’s produce a direct
proof that does not depend on the lemma. In fact, the proof here will help us build a proof for the lemma
as well.

To show P[〈ai, x〉 6= 〈ci, x〉] ≥ 1−1/|S|, we employ a technique known as the principle of deferred decision:
random choices are made only when they become relevant to the algorithm at hand. Since ai 6= ci, there
exists a coordinate j such that ai,j 6= ci,j . Now, set x1, . . . xn except xj arbitrarily. Since all xi’s are chosen
independently of one another, the randomness of xj is preserved when other xi’s get fixed. Now how likely
is the event

n∑
k=1

aikxk −
n∑
k=1

cikxk = 0? (1.1)

Equation (1.1) can be re-written as

xj(aij − cij) = −
∑
k 6=j

(aik − cik)xk. (1.2)

Since all other xi’s are fixed, and ai,j 6= ci,j , equation (1.2) holds for only one value of xj . So at most one
value from S will satisfy the equation, i.e.,

∴ Pxj∼S [〈ai, x〉 = 〈ci, x〉] ≤
1

|S|
.

Since other xi’s don’t affect the choice of xj , the probability is not affected when we let other xi’s be random:

Px∼S [〈ai, x〉 = 〈ci, x〉] ≤
1

|S|
.



1-4 Lecture 9: Schwartz-Zippel Lemma, Perfect Matching

Deferred decision is a great tool to use, but we ought to be careful: any analysis we make after fixing
certain variables must hold regardless of their values (hence the world “arbitrarily”). The proof of the
Schwartz-Zippel Lemma will show how not to use deferred decision.

1.3 Proof of Schwartz-Zippel Lemma

Proof of Lemma 1.6. We proceed by strong induction.

Base case: n = 1. The problem is reduced to the univariate case presented in Example 1.5.

Inductive step. Suppose that lemma holds for any polynomial with less than n variables; let’s show that
it would also hold if we have n variables.

First, fix x1, . . . , xn−1 arbitrarily. Then all values in p(x1, . . . , xn) are known except for xn, so p becomes a
univariate polynomial of xn of degree k, for some k ≤ d:

p(xn) = akx
k
n + ak−1x

k−1
n + . . .+ a1x

1
n + a0.

We’ve reduced the problem to the univariate case again, so the probability for p to be zero is small:

P[p(xn) = 0] ≤ k

|S|
≤ d

|S|
. (1.3)

So are we done? No. We still would need to argue that the probability in (1.3) would be unaffected by
the choice of x1, . . . , xn−1. Unfortunately, this is not the case. Say, an adversary could come and choose
x1, . . . , xn−1 such that the resulting polynomial of xn is identically 0. In this case, P[p = 0] = 1, and the
induction hypothesis does not imply anything.

How can we salvage this argument? Intuitively, we should argue that the adverserial scenario discussed
above will be “rare.” To that end, we make use of the long division for polynomials [CLO08, p.64]:

Let p(x) be a polynomial with degree d and d(x) be a polynomial with degree k ≤ d. Then we
can write p(x) as follows:

p(x) = d(x)q(x) + r(x)

where the quotient q(x) has degree at most (d−k) and the remainder r(x) has degree at most
k − 1. The polynomial d(x) is the divisor.

Let k be the largest degree xn in all monomials of p. So p can be “divided” by xkn as follows:

p(x1, . . . , xn) = xknq(x1, . . . , xn−1) + r(x1, . . . , xn),

where q is a polynomial of x1, . . . , xn−1 of degree (d− k) and the degree of xn in r is at most degree (k− 1).

Now, we again use the principle of defferred decision. First, we assign values to x1, . . . , xn−1 uniformly at
random from S, and we save the randomness of xn for later use. Using the inductive assumption, we have

Px1,...,xn−1∼S [q(x1, . . . , xn−1) = 0] ≤ d− k
|S|

. (1.4)

Observe that if q 6= 0, then p(x1, . . . , xn) is a univariate polynomial in xn, and the coefficient of xkn is nonzero.
So, conditioned on q 6= 0, p(x1, . . . ,n ) is a univariate polynomial which is not identically 0. Since the degree
of this polynomial is k, for a random value of S, it is zero with probability at most k/|S|, i.e.,

Pxn∼S [p = 0|q 6= 0] ≤ k

|S|
. (1.5)



Lecture 9: Schwartz-Zippel Lemma, Perfect Matching 1-5

We can now finish the proof using equations (1.4) and (1.5). by Bayes rule,

P[p = 0] = P [p = 0|q = 0] · P [q = 0] + P [p = 0|q 6= 0]P [q 6= 0]

≤ P [q = 0] + P [p = 0|q 6= 0]

≤ d− k
|S|

+
k

|S|
=

d

|S|
.

1.4 Bipartite Graph Matching

Polynomial identity testing can be use to determine the existence of a perfect matching within a given
bipartite graph G = (A,B,E).

Definition 1.8. A bipartite graph G = (A,B,E) where A = {a1, . . . , an} and B = {b1, . . . , bn} is a graph
where every edge in E connects a vertex in A to a vertex in B.

Here we assume the two sides of the graph have the same number of vertices but this assumption is not
necessarily the case in general.

Definition 1.9. A perfect matching of graph G is a subset M of edges in E such that every vertex of G
is incident to exactly one edge of M .

In order for G to have a perfect matching we need |A| = |B|. So assume |A| = |B| = n. There is a
deterministic algorithm that finds a perfect matching in O(|E|

√
n). Now let’s build a randomized algorithm.

First, define the adjacency matrix as follows:

M(i, j) =

{
1 if ai ∼ bj
0 otherwise

Construct a matrix Mx where its entries correspond to indeterminants,

Mx(i, j) =

{
xi,j if ai ∼ bj
0 o.w.

Theorem 1.10. Graph G has a perfect matching if and only if the determinant det(Mx) is not identical to
zero.

Proof. [⇒] Suppose G has a perfect matching. That is, there is a bijection σ that maps each ai ∈ A to a
unique bj ∈ B. (Since it is a matching, no two vertices in A will be mapped to the same vertex in B. Since
the matching is perfect, no vertex in B will be left out.) Therefore, we can see σ as a permutation on the
set of integers [n] = {1, 2, . . . , n}. It follows that

n∏
i=1

Mx(i, σ(i)) =

n∏
i=1

xi,σ(i)

is a nonzero monomial of the polynomial det(Mx), recall the formula for the determinant:

det(Mx) =
∑

σ:[n]→[n]

sgn(σ)

n∏
i=1

Mx(i, σ(i)),



1-6 Lecture 9: Schwartz-Zippel Lemma, Perfect Matching

In particular, when for the particular permutation σ corresponding to a perfect matching in G in the above
polynomial we get a monomial with a nonzero coefficient. This monomial is different from all other monomials
of det(Mx), i.e., there is no cancellations. This means that det(Mx) is not a zero polynomial.

[⇐] Now, suppose det(Mx) 6≡ 0. That means that the polynomial has a nonzero monomial
∏n
i=1Mx(i, σ(i))

corresponding to some permutation σ. But that permutation σ gives us a perfect matching in G as desired.

The above theorem gives a simple and efficient algorithm to test if a given bipartite graph has a perfect
matching. By Schwartz-Zippel lemma it is enough to assign values to xi,j from a set S of numbers of size
|S| ≥ n2. Then, if G has a perfect matching, det(Mx) 6= 0 with probability at least 1− 1/n.

The disadvantage of this algorithm is that it doesn’t give us the perfect matching; it only tells us whether G
has one or not. How do we find the perfect matching? For a bipartite graph G, we choose a big set |S| � n
and set xij = 2wij where wij is chosen independently and uniformly at random from S. Then, we can show
that, with high probability, there is a unique minimum weight perfect. This means that we can write

det(Mx) = 2w(F )(±1 + [even number]),

where w(F ) is the sum of the weight of edges of the minimum weight prefect matching F . Having this in
hand, all we need to do is to test for every edge of G if that edge is a part of the minimum weight perfect
matching. Note that w(F ) is uniquely defined in the above, given det(Mx); in particular, w(F ) is the the
largest exponent of 2 that divides det(Mx). For every edge (ai, bj), we delete the edge and test if the weight
the of the minimum weight perfect matching decreases to w(F )−wi,j . If this happens, then (ai, bj) ∈ F and
otherwise it is not. This algorithm can be implemented in parallel in O(polylog(n)) time using polynomially
many processors. See the following section for more details.

1.5 General Graph Matching

It turns out the idea in the previous section generalizes to find perfect matchings in general graph, although
the proof is a lot more difficult. We begin by constructing skew-symmetric matrix as follows:

Mx(i, j) =


xij if ai ∼ bj and i < j

−xij if ai ∼ bj and i ≥ j
0 otherwise

Theorem 1.11. Graph G has a perfect matching if and only if the determinant det(A) is not identical to
zero.

We omit the proof. How difficult is to test det(Mx) against zero? We don’t want to spend O(n3) time to
compute the determinant. It turns out that there is a parallel algorithm that comptues the determinant
using poly(n) processors in O(log2(n)) time [Mul86].

References

[CLO08] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics.
Springer, 2008. url: https://books.google.com/books?id=yCsDO425PC0C (cit. on p. 1-4).

https://books.google.com/books?id=yCsDO425PC0C


Lecture 9: Schwartz-Zippel Lemma, Perfect Matching 1-7

[KI04] V. Kabanets and R. Impagliazzo. “Derandomizing polynomial identity tests means proving circuit
lower bounds”. In: Computational Complexity 13.1-2 (2004), pp. 1–46 (cit. on p. 1-2).

[Mul86] K. Mulmuley. “A fast parallel algorithm to compute the rank of a matrix over an arbitrary field”.
In: STOC. ACM. 1986, pp. 338–339 (cit. on p. 1-6).


	Polynomial Identity Testing and Schwartz-Zippel Lemma
	Matrix Identity Testing
	Proof of Schwartz-Zippel Lemma
	Bipartite Graph Matching
	General Graph Matching

