
CSE 521: Design and Analysis of Algorithms I Fall 2020

Lecture 10: Linear Algebra Background
Lecturer: Shayan Oveis Gharan 10/28/2019

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Now that we have finished our lecture series on randomized algorithms, we start with a bit of linear algebra
review so that we can use these tools in the algorithms we learn next. The book ‘Matrix Analysis’ by Horn
and Johnson is an excellent reference for all the concepts reviewed here.

10.1 Eigenvalues

For a matrix A ∈ Rn×n, the eigenvalue-eigenvector pair is defined as (λ, x), where

Ax = λx.

For an indeterminant (variable) x the polynomial det(xI − A) is called the characteristic polynomial of A.
It turns out that the roots of this polynomial are exactly the eigenvalues of A.

Let us justify this fact. If λ is a root of this polynomial it means that det(λI −A) = 0. But that means that
columns of the matrix λI −A, say v1, . . . , vn ∈ Rn are not linearly independent, i.e., there exists coefficients
c1, . . . , cn such that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Now, the vector c = (c1, . . . , cn) ∈ Rn is an eigenvector of λI − A with eigenvalue 0, i.e., (λI − A)c = 0, or
equivalently,

λc = λIc = Ac.

So, λ is an eigenvalue of A. Since any degree n polynomial has n roots any square matrix A has exactly n
eigenvalues.

Many of our algorithms will deal with the family of symmetric matrices (which we denote by Sn), with
special properties of eigenvalues. We start with the fact that a symmetric matrix has real eigenvalues. This
means we can order them and talk about the largest/smallest eigenvalues.

10.1.1 Spectral Theorem

Theorem 10.1 (Spectral Theorem). For any symmetric matrix, there are eigenvalues λ1, λ2, . . . , λn, with
corresponding eigenvectors v1, v2, . . . , vn which are orthonormal (that is, they have unit length measured in
the `2 norm and 〈vi, vj〉 = 0 for all i and j). We can then write

M =

n∑
i=1

λiviv
T
i = V ΛV T . (10.1)

where V is the matrix with vi’s arranged as column vectors and Λ is the diagonal matrix of eigenvalues.
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The vi’s in the above theorem form a basis for all vectors in Rn. This means that for any vector x we can
uniquely write it as

x =

n∑
i=1

〈vi, x〉vi.

An application of this is being able to write complicated functions of a symmetric matrix in terms of functions
of the eigenvalues that is, f(M) =

∑n
i=1 f(λi)viv

T
i for M ∈ Sn. For example:

• M2 =
∑n
i=1 λ

2
i viv

T
i .

• exp(M) =
∑∞
i=1

Ak

k! =
∑n
i=1 exp(λi)viv

T
i

• For an invertible matrix, M−1 =
∑n
i=1( 1

λi
)viv

T
i .

We say a symmetric matrix M is positive semidefinite (PSD) if all eigenvalues of M are nonnegative. For a
positive semidefinite M we can write

√
M = M1/2 =

n∑
i=1

√
λiviv

ᵀ
i .

We usually use the notation M � 0 to denote that M is PSD. In particular, any PSD matrix M can be
written as AAT for some matrix A defined above. later we see the converse of this statement is also true.

Two special functions of eigenvalues are the trace and determinant, described in the next subsection.

10.1.2 Trace, Determinant and Rank

Definition 10.2. The trace of a square matrix is the sum of its diagonal entries.

Alternatively, we can say the following:

Lemma 10.3. The trace of a symmetric matrix A ∈ Rn×n is equal to the sum of its eigenvalues.

Proof 1. By definition of trace,

Tr(A) =

n∑
i=1

1Ti A1i,

where 1i is the indicator vector of i, i.e., it is a vector which is equal to 1 in the i-th coordinate and it is 0
everwhere else. Using (10.1) we can write,

Tr(A) =

n∑
i=1

1Ti

 n∑
j=1

λjvjv
T
j

1i

=

n∑
i=1

n∑
j=1

λj1
T
i vjv

T
j 1i

=

n∑
i=1

n∑
j=1

λj〈1i, vj〉2

=

n∑
j=1

λj

n∑
i=1

〈1i, vj〉2 =

n∑
j=1

λj .
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The last identity uses the fact that for any vector vj ,
∑n
i=1〈1i, vj〉2 = ‖vj‖2 = 1, as 11, . . . ,1n form another

orthonormal basis of Rn.

Proof 2. Recall that
det(xI −A) = (x− λ1) . . . (x− λn)

Observe that the coefficient of xn−1 in the RHS is equal to −(λ1 + · · · − λn). So, to prove the claim it is
enough to show that the coefficient of xn−1 is the negative of the trace of A.

Let us expand det(xI −A)

det(xI −A) =
∑
σ

n∏
i=1

sgn(σ)(xI −A)i,σi

Observe that for every permutation σ in the RHS either σi = i for all i or there exists at least two indices
i, j such that σi 6= i and σj 6= j. But the latter case does not give any monomial of degree n− 1 in x. It can
only give monomials of degree at most n− 2.

Now, consider the terms coming from the identity permutation σ as the coefficient of xn−1 comes from this
permutation. It follows that such a permutaiton has sign +1. So we just need to figure out the coefficient of
xn−1 coming from the product of diagonal entries of the matrix xI −A,

n∏
i=1

(xI −A)i,i =

n∏
i=1

(x−Ai,i)

but that is exactly the negative of the sum of diagonal entries of A.

Note that we did not use eigenvectors of A in this proof. So, unlike proof 1 and proof 3, this proof works
out even if A is not a symmetric matrix.

Proof 3: Recall the cyclic permutation property of trace is that

Tr(ABC) = Tr(BCA) = Tr(CAB)

This is derived simply from definition. Let λ1, . . . , λn be the eigenvalues of A with corresponding eigenvalues
v1, . . . , vn. We have

Tr(A) = Tr

(
n∑
i=1

λiviv
T
i

)

=

n∑
i=1

Tr(λiviv
T
i )

=

n∑
i=1

λi Tr(〈vi, vTi 〉)

=

n∑
i=1

λi.

In the last identity we used that ‖vi‖ = 1 for all i.

Lemma 10.4. The determinant of a matrix is the product of its eigenvalues.

To prove the lemma once again we use the characteristic polynomial det(xI −A) = (x−λ1) . . . (x−λn). So,
if we plug in x = 0 we obtain, det(−A) =

∏n
i=1−λi or equivalently that det(A) =

∏n
i=1 λi.
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10.2 Rayleigh Quotient

Let A be a symmetric matrix. The Rayleigh coefficient gives a characterization of all eigenvalues (and
eigenvectors of A) in terms of the solution to optimization problems. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of A. Then,

λ1(A) = max
‖x‖2=1

xTAx = max
x

xTAx

xTx
(10.2)

Let x1 be the optimum vector in the above. It follows that x1 is the eigenvector of A corresponding to λ1.
Then,

λ2(A) = max
x:〈x,x1〉=0,‖x‖=1

xTAx

And so on, the third eigenvector is the vector maximizing the quadratic form xTAx over all vectors that
orthogonal to the first two eigenvectors. Similarly, we can write

λn(A) = min
‖x‖2=1

xTAx

Let us derive, Equation (10.2). Note that f(x) = xTAx is a continuous function and {x | ‖x‖2 = 1} is a
compact set. So by Weierstrass Theorem, the maximum is attained. Now we diagonalize A using Equation
(10.1) as A =

∑n
i=1 λiviv

T
i and multiply on either side by x to get the following chain of equalities:

xTAx = xT

(
n∑
i=1

λiviv
T
i

)
x

=

n∑
i=1

λix
T viv

T
i x

=

n∑
i=1

λi〈x, vi〉2. (10.3)

Since ‖x‖ = 1 and v1, . . . , vn form an orthonormal basis of Rn,
∑n
i=1〈vi, x〉2 = ‖x‖2 = 1. Therefore, (10.3)

is maximized when 〈x, v1〉 = 1 and the rest are 0. This means the vector x for which this optimum value is
attained is v1 as desired.

In the same way, we can also get the characterization for the minimum eigenvalue.

Positive (Semi) Definite Matrices An equivalent definition for a symmetric matrix A ∈ Rn×n to be
PSD is that

xTAx ≥ 0

for all x ∈ Rn. It follows by the Rayleigh quotient that xᵀAx ≥ 0 for all vectors x ∈ Rn if and only if all
eigenvalues of A are nonnegative.

10.3 Singular Value Decomposition

Of course not every matrix is unitarily diagonalizable. In fact non-symmetric matrices may not have real
eigenvalues the space of eigenvectors is not necessarily orthonormal.
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Instead, when dealing with a non-symmetric matrix, first we turn it into a symmetric matrix and then we
apply the spectral theorem to that matrix. This idea is called the Singular Value Decomposition (SVD). For
any matrix A ∈ Rm×n (with m ≤ n) can be written as

A = UΣV T =

m∑
i=1

σiuiv
T
i (10.4)

where σ1 ≥ · · · ≥ σm ≥ 0 are the singular values of A, u1, . . . , um are orthonormal and are called the left
singular vectors of A and v1, . . . , vm ∈ Rn are orthonormal and are call the right singular vectors of A. To
construct this decomposition we need to apply the spectral theorem to the matrix ATA. Observe that if the
above identity holds then

ATA =

m∑
i=1

σiviu
T
i

n∑
j=1

σjujv
T
j =

n∑
i=1

σTi viv
T
i

where we used that 〈ui, uj〉 is 1 if i = j and it is zero otherwise. Therefore, v1, . . . , vm are in fact the
eigenvectors of ATA and σ2

1 , . . . , σ
2
m are the eigenvalues of ATA. By a similar argument it follows that

u1, . . . , um are eigenvectors of AAT and σ2
1 , . . . , σ

2
m are its eigenvalues.

Note that both matrices AAT and ATA are symmetric PSD matrices. In the matrix form the above identities
can be written as

ATA = V ΣUTUΣV T = V Σ2V T = [V Ṽ ]

[
Σ2 0
0 0

]
[V Ṽ ]T (10.5)

AAT = UΣV TV ΣUT = UΣ2UT = [U Ũ ]

[
Σ2 0
0 0

]
[U Ũ ]T (10.6)

where Ṽ , Ũ are any matrices for which [V Ṽ ] and [U Ũ ] are orthonormal. The righthand expressions are
eigenvalue decompositions of ATA and AAT .

To summarize,

• The singular values σi are the squareroots of eigenvalues ofATA andAAT , that is, σi(A) =
√
λi(ATA) =√

λi(AAT ) (λi(A
TA) = λi(AA

T ) = 0 for i > r).

• The left singular vectors u1, . . . , ur are the eigenvectors of AAT the right singular vectors V =
[v1, . . . , vm] are the eigenvectors of ATA.

In general, computing the singular value decomposition can take O(n3) time.

10.4 Matrix Norms

Any matrix A ∈ Rn×n can be thought of as a vector of n2 dimensions. Therefore, we can measure the ‘size’
of a matrix using matrix norms. For a function ‖.‖ : Rn×n → R to be a matrix norm, it must satisfy the
properties of non-negativity (and zero only when the argument is zero), homogeneity, triangle inequality and
submultiplicativity. We list below a few important matrix norms that we’ll repeatedly encounter:

Frobenius norm:

‖A‖F = |Tr(AAT )|1/2 = (

n∑
i,j=1

a2ij)
1/2. (10.7)
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The Frobenius norm is just the Euclidean norm of matrix A thought of as a vector. As we just saw in
Section 10.3,

Tr(AAT ) =

n∑
i=1

λi(AA
T ) =

n∑
i=1

σi(A)2,

therefore this gives us an important alternative characterization of Frobenius norm:

‖A‖F = (

n∑
i=1

σi(A)2)1/2. (10.8)

Operator norm: The operator norm ‖.‖2 is defined as

‖A‖2 = max
‖x‖=1

‖Ax‖ = max
x 6=0

‖Ax‖
‖x‖

(10.9)

It follows by the Rayleigh-Ritz characterization that

max
x

‖Ax‖
‖x‖

=

√
max
x

‖Ax‖2
‖x‖2

=

√
max
x

xTATAx

xTx
=
√
λmax(ATA) = σmax(A).

10.5 A Geometric Intuition of a Matrix/Operator

Let M =
∑n
i=1 λiviv

ᵀ
i be a symmetric matrix. We can represent M geometrically by a ellipse defined with

the following equation:
x ∈ Rn : xᵀM−2x = 1.

The axis of this ellipse correspond to eigenvectors of M and length of the i-th axis is equal to the i-th largest
eigenvalue in absolute value. This is because if we let x = λivi, then

xᵀM−2x = (λivi)
ᵀM−2(λivi) = (λivi)

ᵀ 1

λi
vi = 1,

where we used the vi is an eigenvector of M−2 with corresponding eigenvalue of 1/λ2i . So, this says that
along the vi direction the farthest point is exactly |λi| away from the origin. In particular, the farthest point
of the ellipse is maxi |λi| away from the origin.

We can understand this ellipse differently: It can be seen as the image of the unit sphere around the origin
with respect to operator M . Recall that the set points on the unit sphere are all x ∈ Rn such that ‖x‖ = 1.
The image with respect to M , is Mx. We claim that for any x such that ‖x‖ = 1, Mx is on the ellipse. It
is enough to see

(Mx)ᵀM−2(Mx) = xᵀMᵀM−2Mx = xᵀx‖x‖2 = 1.

So, in particular, the volume of ellipse defined above is equal to the volume of the ball of radius 1 times
det(M).
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