CSE 521: Design and Analysis of Algorithms

Fall 2020

Problem Set 3

Deadline: Nov 19th in Canvas

- 1) a) Let $M \in \mathbb{R}^{n \times n}$ be a (symmetric) PSD matrix. Show that for any $P \in \mathbb{R}^{m \times n}$, $PMP^T \succeq 0$.
 - b) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix that has k positive eigenvalues for some integer $k \geq 1$. Use Cauchy's interlacing theorem (below) to show that for any $P \in \mathbb{R}^{m \times n}$, PMP^T has at most k positive eigenvalue.

Theorem 3.1 (Cauchy's Interlacing Theorem). Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_n \leq \cdots \leq \lambda_1$. For a vector $v \in \mathbb{R}^n$, let $\beta_n \leq \cdots \leq \beta_1$ be the eigenvalues of $M + vv^T$. Then,

$$\lambda_n < \beta_n < \lambda_{n-1} < \beta_{n-1} < \dots < \lambda_1 < \beta_1$$
.

- 2) Recall that for matrices $A, B \in \mathbb{R}^{n \times n}$ we write $A \succeq B$ iff $A B \succeq 0$, i.e., A B is PSD.
 - a) Let $A = vv^T$ be a rank 1 matrix. Prove that $A \leq I$ iff trace $(A) \leq 1$.
 - b) Let $A \in \mathbb{R}^{n \times n}$ be a (symmetric) positive definite matrix, and let $J = 1^{n \times n}$ be the all-ones matrix. Prove that $A \succeq J$ iff $A^{-1} \bullet J \le 1$. Recall that for matrices $A, B \in \mathbb{R}^{n \times n}$,

$$A \bullet B = \operatorname{trace}(AB^T) = \sum_{i,j} A_{i,j} B_{i,j}.$$

- 3) In this problem we discuss a fast algorithm for approximately estimating the low rank approximation (up to an additive error) with respect to the Frobenius norm.
 - a) Let $A \in \mathbb{R}^{m \times n}$ and suppose we want to estimate Av for a vector $v \in \mathbb{R}^n$. Here is a randomized algorithm for this task. Choose the *i*-th column of A, A_i , with probability

$$p_i = \frac{\|A_i\|^2}{\|A\|_F^2}$$

and let $X = A_i v_i/p_i$. Show that $\mathbb{E}[X] = Av$. Calculate $Var(X) = \mathbb{E}[\|X\|^2] - \|\mathbb{E}X\|^2$. Note that, with this definition, $\mathbb{E}[X]$ is a vector whereas Var(X) is a number.

b) Next, we use a similar idea to approximate A. For $1 \le i \le s$ let $X_i = \frac{A_j}{\sqrt{sp_j}}$ with probability p_j where $1 \le j \le n$. Let $X \in \mathbb{R}^{m \times s}$ and let X_i be the i-th columns of X. Note that $XX^T = \sum_{i=1}^s X_i X_i^T$. Show that

$$\mathbb{E}XX^T = AA^T.$$

Show that $\mathbb{E}||XX^T - AA^T||_F^2 \le \frac{1}{s}||A||_F^4$.

- 4) Let $A \in \mathbb{R}^{n \times n}$. Normally, we need to scan all non-zero entries of A to compute $||A||_F^2$. In this problem, we see that if A is PSD then we can approximate $||A||_F^2$ in time $O(n \log(1/\delta)/\epsilon^2)$ with probability at least 1δ . Note that this is sublinear in the number of non-zero entries of A. So, indeed our algorithm does not read all non-zero entries of A.
 - a) First, assume that all diagonal entries of A are 1, i.e., $A_{i,i} = 1$ for all i. Show that for all $i \neq j$, $A_{i,j} \leq 1$.

Hint: Use the fact that A is PSD iff $A = BB^{\mathsf{T}}$ for some $B \in \mathbb{R}^{n \times n}$. Note that you are not explicitly given B as part of the input in this problem, but you will use it in the analysis.

- b) Still, assume all diagonal entries of A are 1. Show that by uniformly sampling $O(n/\epsilon^2)$ entries of A, we can approximate $||A||_F^2$ with a constant probability.
 - **Hint:** For $1 \le i, j \le n$, let $X = n^2 A_{i,j}^2$ with probability $1/n^2$. Show that X is an unbiased estimator of $||A||_F^2$. Compute the relative variance of x and show how to obtain $1 \pm \epsilon$ approximation of $||A||_F^2$.
- c) Now, we solve the general case: In this case, we sample $A_{i,j}$ with probability $p_{i,j} = \frac{A_{i,i}A_{j,j}}{\sum_{k,l}A_{k,k}A_{l,l}}$ and if i,j is sampled we let $X = A_{i,j}^2/p_{i,j}$. Show that X gives an unbiased estimator of $||A||_F^2$. Design an algorithm that by sampling $O(n\log(1/\delta)/\epsilon^2)$ coordinates of A gives a multiplicative $1 \pm \epsilon$ approximation of $||A||_F^2$ with probability at least 1δ .
 - **Hint:** Show that $\frac{\sum_{k,l} A_{k,k} A_{l,l}}{\sum_{i,j} A_{i,j}^2} \le n$ and use it in your calculations.
- d) In this part we want to implement the algorithm that was suggested in part (c). The file "psdnorm" in the course website has entries of a 5000×5000 matrix A. The i-th line of the file has 5000 numbers which are the entries of the row i of the A. First, compute $\|A\|_F^2$ exactly (by reading all entries). Then, estimate $\|A\|_F^2$ by taking empirical mean of 20000 entries of A (according to the above distribution). Do the same estimation this time with 100000 samples; how much does the estimate improve? Compute the median of the 100000 samples of the unbiased estimator. Does that give a better estimate than the empirical mean? Upload your code together with a description of your solutions to the above questions.