CSE 521: Design and Analysis of Algorithms I Fall 2020

Background / Cheat Sheet

In this note I will discuss several background materials that we will discuss and exploit many times throughout
this course.

1 Randomized Algorithm

Expectation: For a random variable X with domain, the discrete set S,

E[X] =) P[X =ss.

ses

Linearity of Expectation: For any two Random variables X,Y,

E[X +Y]=E[X]+E[Y].

Variance: The variance of a random variable X is defined as Var(X) = E [(X — E[X])?]. The following
identity always holds,
Var(X) =E [X?] — (E[X])*.

The standard deviation of X, o(X) = /Var(X).

Mutual Independence A set of random variables X, ..., X,, are mutually independent if for any S C

{1,...,n},
E lHXZ] = HIE[Xi].

€S €S

k-wise Independence For an integer £k > 2, a set of random variables X1,..., X, is set to be k-wise
independent if for any set S C {1,...,n} of size k,

E[HXi] :H]E[Xi].

€S €S

Sum of Variance: Let X1,...,X,, be pairwise independent random variables, then

Var(X; + -+ X,) = Var(Xy) + - - - + Var(X,,).

Markov’s Inequality Let X be a nonnegative random variable, then for any k& > 0,

E [X]
PIX >k <=~
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Chebyshev’s Inequality For any random variable X and any € > 0,
< Var(X )

= 62

PIX —E[X]| > ¢

So, equivalently,
1

P[X —E[X]] > ko(X)] < .

Hoeffding’s Inequality Let Xi,..., X, be independent random variables where for all i, X; € [a;, b;].

Then, for any € > 0,
- - —2¢2
X, —E X;| > ¢ §2exp(n—>
ZZ:; ZZ:; ] Zi:l(a’i —b;)?

Multiplicative Chernoff Bound Let X;,..., X, be independent Bernoulli random variables, i.e., for all
i, X; €{0,1}, and let X = X; +---+ X,, and u = E[X]. Then, for any ¢ > 0,

P

ee 13 7@

and ,
PIX < (1—ep] <ecH?

McDiarmid’s Inequality Let Xi,...,X, € X be independent random variables. Let f : A" — R. If for
all 1 <7 <nand for all z4,...,z, and Z;,

‘f($1, e ,ZL’n) — f(l’l, ey xi,l,ii,xﬂrl, e ,l'n)| S Ci,
then,
—2¢2
]P)Hf(Xh,Xn)—Ef(Xl,,Xn)|>6]§26Xp —W .
Concentration of Gaussians Let X3,..., X, be independent standard normal random variables i.e., for

all 4, X; ~ N(0,1). Then, for any € > 0,
2
P >e| <2exp <§>

Gaussian Density Function The density function of a 1-dimensional normal random variable X ~
N (i, 0?) is as follows:

in—n

i=1

1
V2ro?

More generally, we say X1,..., X, form a multivariate normal random variable when they have following
density function:

o (@—)? /207

det(gﬂ-z)*l/?e*(r*u)TE’l(fﬂ*u)/Q
where ¥ is the covariance matrix of Xi,..., X,. In particular, for all i, 7,
Lij = Cov(Xy, Xj) =E[X; —E[X]E[X; —E[X;]] = E[X,X;] - E[X;]E[X;].

As a special case, if X1, ..., X, are standard normals chosen independently then X is just the identity matrix.
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2 Spectral Algorithms

Determinant Let A € R™*", the determinant of A can be written as follows:

det(A) = Z H Ai (i) sgn(o).

o =1

where the sum is over all permutations ¢ of the numbers 1,...,n, and sgn(o) € {+1, —1}. For a permutation
o, sgn(o) is the parity of the number of swaps one needs to transform o into the identity permutations. For
example, for n = 4, sgn(1,2,3,4) = +1 because we need no swaps, sgn(2,1,3,4) = —1 because we can
transform it to the identity just by swapping 1,2 and sgn(3,1,2,4) = +1.

Properties of Determinant

e For a matrix A € R"*" det(A) # 0 if and only if the columns of A are linearly independent. Recall
that for a set of vectors vy, ...,v, € R™, we say they are linearly independent if for any set of coefficients
Cly...,Cp

c1v1 + vy + -+ v, =0

only when ¢y = ¢y = -+ = ¢, = 0. In other words, vy, ...,v, are linearly independent if no v; can be
written as a linear combination of the rest of the vectors.

e For any matrix A € R™ ™, with eigenvalues A1,..., Ay,

n

det(4) = [T\

i=1
So, det(A) = 0 iff A has at least one zero eigenvalue. So, it follows from the previous fact that A has

a zero eigenvalue iff columns of A are linearly independent.

e For any two square matrices A, B € R"*",

det(AB) = det(A) det(B).

Characteristic Polynomial For a matrix A € R"*™ we write det(x] — A) for an indeterminant (variable)
x is called the characteristic polynomial of A. The roots of this polynomial are the eigenvalues of A. In
particular,

det(z] — A) = (x — A)(x — A2) ... (. — \p),

where \q,...,\, are the eigenvalues of A. It follows from the above identity that for z = 0, det(—A) =
[T;_; N\ or equivalently, det(A4) =[] Ai.

Rank The rank of a matrix A € R™*" is the number of nonzero eigenvalues of A. More generally, the rank
of a matrix A € R"™*" is the number of nonzero singular values of A. Or in other words, it is the number of
nonzero eigenvalues of AAT.
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PSD matrices We discuss several equivalent defnitions of PSD matrices. A symmetric matrix A € R"*"
is positive semidefnite (PSD) iff

e All eigenvalues of A are nonnegative

e A can be written as BBT for some matrix B € R"*™.

e zTAx > 0 for all vectors z € R™.

o det(Agg) > 0 for all S C {1,...,n} where Ag s denotes the square submatrix of A with rows and

columns indexed by S.

The following fact about PSD matrices is immediate. If A > 0 is an n X n matrix, then for any matrix
C € RFxn,
CACT - 0.

This is because for any vector z € R¥,
2TCACTx = (CTa)T A(CTx) = yT Ay > 0,
where y = CTx.

For two symmetric A, B € R™ we write A < B if and only if B — A > 0. In other words, A < B if and only
if for any vector x € R",
2T Az < 27 Bx.

Let A1,..., A\, be the eigenvalues of A, and A, ..., Ao be the eigenvalues of B. If A < B, then for all i,
A <\

Nonsymmetric Matrices Any matrix A € R™*" (for m < n) can be written as

m

— E T

A= O UV,
i=1

where
® Uy, ..., U,y € R"™ form an orthonormal set of vectors. These are called left singular vectors of A and
they have the property, u; A = o;v;. These vectors are the eigenvectors of the matrix AAT.

® Uy, ..., Uy € R” form an orthonormal set of vectors. Note that these vectors do not necessarily span
the space. These vectors are eigenvectors of the matrix ATA.

® 01,...,0,, are called the singular values of A. They are always real an nonnegative. In fact they are
eigenvalues of the PSD matrix AAT.

Rotation Matrix A matrix R"*™ is a rotation matrix iff | Rz|2 = ||z||2 for all vectors € R™. In other
words, R as an operator preserves the norm of all vectors. Next, we discuss equivalent definitions of R being
a rotation matrix. R is a rotation matrix iff

e RRT =1.
e All singular values of R are 1.

e Columns of R form an orthonormal set of vectors in R™.
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Projection Matrix A symmetric matrix P € R™"*" is a projection matrix iff

e It can be written as P = Zle viviT for some 1 < k <n.
e All eigenvalues of P are 0 or 1.

e PP=P.

It follows from the spectral theorem that there is a unique projection matrix of rank n and that is the identity
matrix. In general a projection matrix projects any given vector x to the linear subspace corresponding to
span of the vectors vy, ..., vg.

Trace For a square matrix A € R"*" we write

TI‘(A) = Z Ai,i
to denote the sum of entries on the diagonal of A. Next, we discuss several properties of the trace.

e Trace of A is equal to the sum of all eigenvalues of A.
e Trace is a linear operator, for any two square matrices A, B € R"*™

Tr(A+ B) Tr(A) + Tr(B)
Tr(tA) = ¢Tr(A),VieR.

It follows by the previous fact that for a random matrix X, E [Tr(X)] = Tr(E [X]).

For any pair of matrices A € R"** and B € R**" such that AB is a square matrix we have
Tr(AB) = Tr(BA).
So, in particular, for any vector v € R™,

Tr(voT) = Tr(vTv) = [jv]|?.

e For any matrix A € R™*"

Al = 3057 42, = Tx(A4T)

i=1 j=1

Matrix Chernoff Bound Let X be a random n X n PSD matrix. Suppose that X < oE [X]with proba-
bility 1 for some a > 0. Let X;,..., Xi be independent copies of X. Then, for any 0 < € < 1,

PI1l-eEX] =2 —-(X1+ - +Xi) 2 (1+¢E [X]} > 1 — 2ne < k/4e,

T =
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3 Optimization

Convex Functions A function f: R™ — R is convex on a set S C R"™ if for any two points z,y € S, we
have

We say f is concave if for any such x,y € S, we have

f(flaz+(1—a)y) >af(z)+ (1 —a)f(y),

for any 0 < a < 1. There is an equivalent definition of convexity: For a function f : R®™ — R, the Hessian of
f, V2f is a n x n matrix defined as follows:

(V2f)ij = O2,0x, [

for all 1 <1i,7 < n. We can show that f is convex over S if and only if for all a € S,

V2f > 0.

r=a

For example, consider the function f(x) = 27 Az for x € R™ and A € R"*". Then, V2f = A. So, f is
convex (over R™) if and only if A > 0.

For another example, let f : R — R be f(x) = z* for some integer & > 2. Then, f”(z) = k(k — 1)az*=2. If k
is an even integer, f”(x) > 0 over all x € R, so f is convex over all real numbers. On the other hand, if % is
an odd integer then f”(x) > 0 if and only if > 0. So, in this f is convex only over non-negative reals.

Similarly, f is concave over S, if V2f =< 0 for all @ € S. For example, z — logx is concave over all
r=a
positive reals.

Convex set We say a set S C R" is convex if for any pair of points x,y € S, the line segment connecting
x toyisin S.

For example, let f : R™ — R be a convex function over a set S C R". Let t € R, and define
T={zeR": f(x) <t}
Then, T is convex. This is because if z,y € T, then for any 0 < a < 1,
flaz+ (1 —a)y) <af(@)+ (1 -a)f(y) Sat+(1-a)t =t

where the first inequality follows by convexity of f. So, az + (1 — «) € T and T is convex.

Norms are Convex functions A norm || - || is defined as a function that maps R™ to R and satisfies the
following three properties,

i) ||z|| > 0 for all € R",
ii) |Jaz| = alz|| for all @ > 0 and = € R,
iii) Triangle inequality: [lz + y[| < [lz[| + [ly|| for all z,y € R™.
It is easy to see that any norm function is a convex function: This is because for any xz,y € R", and

0<a<l,
laz + (1 = a)yl| < [lez| + (1 — )yl = aflzl| + (1 — )|yl
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4 Useful Inequalities

e For real numbers, a1, ...,a, and nonnegative reals by, ..., by,

. QG _ a1+t ap a;
min — < —— < max —

e Cauchy-Schwartz inequality: For real numbers a1,...,a,,b1,...,bp,

iai'big ZG% be
i—1 \ 7 \

There is an equivalent vector-version of the above inequality. For any two vectors u,v € R™,
n
D vy = (u,0) < fuf - o]
i=1

The equality in the above holds only when u, v are parallel.
e AM-GM inequality: For any n nonnegative real numbers aq,...,...,an,

a1+...+an

- >(ay-ag-...ap)

e Relation between norms: For any vector a € R™,
lallz < [lally < vn - [lall2
The right inequality is just Cauchy-Schwartz inequality.
e For any real numbers aq,...,a,,
(laal + -+ lan])* < naf + -+ ap).
This is indeed a special case of Cauchy-Schwartz inequality.

e For any real number x, 1 — z < e~*. In this course we use 1 — x &~ e~ % to simplify calculations.



