CSE 521: Design and Analysis of Algorithms I

Fall 2020

Background / Cheat Sheet

In this note I will discuss several background materials that we will discuss and exploit many times throughout this course.

1 Randomized Algorithm

Expectation: For a random variable X with domain, the discrete set S,

$$\mathbb{E}\left[X\right] = \sum_{s \in S} \mathbb{P}\left[X = s\right] s.$$

Linearity of Expectation: For any two Random variables X, Y,

$$\mathbb{E}\left[X+Y\right] = \mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right].$$

Variance: The variance of a random variable X is defined as $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$. The following identity always holds,

$$\operatorname{Var}(X) = \mathbb{E}\left[X^2\right] - (\mathbb{E}\left[X\right])^2.$$

The standard deviation of X, $\sigma(X) = \sqrt{\operatorname{Var}(X)}$.

Mutual Independence A set of random variables X_1, \ldots, X_n are mutually independent if for any $S \subseteq \{1, \ldots, n\}$,

$$\mathbb{E}\left[\prod_{i\in S} X_i\right] = \prod_{i\in S} \mathbb{E}\left[X_i\right].$$

k-wise Independence For an integer $k \geq 2$, a set of random variables X_1, \ldots, X_n is set to be k-wise independent if for any set $S \subseteq \{1, \ldots, n\}$ of size k,

$$\mathbb{E}\left[\prod_{i\in S} X_i\right] = \prod_{i\in S} \mathbb{E}\left[X_i\right].$$

Sum of Variance: Let X_1, \ldots, X_n be pairwise independent random variables, then

$$\operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n).$$

Markov's Inequality Let X be a nonnegative random variable, then for any $k \geq 0$,

$$\mathbb{P}\left[X \ge k\right] \le \frac{\mathbb{E}\left[X\right]}{k}.$$

Chebyshev's Inequality For any random variable X and any $\epsilon > 0$,

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| > \epsilon\right] \le \frac{\operatorname{Var}(X)}{\epsilon^2}.$$

So, equivalently,

$$\mathbb{P}\left[|X - \mathbb{E}\left[X\right]| > k\sigma(X)\right] \le \frac{1}{k^2}.$$

Hoeffding's Inequality Let $X_1, ..., X_n$ be independent random variables where for all $i, X_i \in [a_i, b_i]$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left[\left|\sum_{i=1}^{n} X_i - \mathbb{E}\sum_{i=1}^{n} X_i\right| > \epsilon\right] \le 2\exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^{n} (a_i - b_i)^2}\right)$$

Multiplicative Chernoff Bound Let X_1, \ldots, X_n be independent Bernoulli random variables, i.e., for all $i, X_i \in \{0, 1\}$, and let $X = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}[X]$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left[X>(1+\epsilon)\mu\right] \leq \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu} \leq e^{-\frac{\epsilon^2\mu}{2+\epsilon}},$$

and

$$\mathbb{P}\left[X < (1 - \epsilon)\mu\right] \le e^{-\epsilon^2 \mu/2}$$

McDiarmid's Inequality Let $X_1, \ldots, X_n \in \mathcal{X}$ be independent random variables. Let $f: \mathcal{X}^n \to \mathbb{R}$. If for all $1 \le i \le n$ and for all x_1, \ldots, x_n and \tilde{x}_i ,

$$|f(x_1,\ldots,x_n)-f(x_1,\ldots,x_{i-1},\tilde{x}_i,x_{i+1},\ldots,x_n)| \le c_i,$$

then,

$$\mathbb{P}\left[|f(X_1,\ldots,X_n) - \mathbb{E}f(X_1,\ldots,X_n)| > \epsilon\right] \le 2\exp\left(-\frac{-2\epsilon^2}{\sum_i c_i^2}\right).$$

Concentration of Gaussians Let X_1, \ldots, X_n be independent standard normal random variables i.e., for all $i, X_i \sim \mathcal{N}(0, 1)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left[\left|\sum_{i=1}^{n} X_i^2 - n\right| > \epsilon\right] \le 2\exp\left(\frac{\epsilon^2}{8}\right)$$

Gaussian Density Function The density function of a 1-dimensional normal random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ is as follows:

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}.$$

More generally, we say X_1, \ldots, X_n form a multivariate normal random variable when they have following density function:

$$\det(2\pi\Sigma)^{-1/2}e^{-(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)/2}$$

where Σ is the covariance matrix of X_1, \ldots, X_n . In particular, for all i, j,

$$\Sigma_{i,j} = \operatorname{Cov}(X_i, X_j) = \mathbb{E}\left[X_i - \mathbb{E}\left[X_i\right]\right] \mathbb{E}\left[X_j - \mathbb{E}\left[X_j\right]\right] = \mathbb{E}\left[X_i X_j\right] - \mathbb{E}\left[X_i\right] \mathbb{E}\left[X_j\right].$$

As a special case, if X_1, \ldots, X_n are standard normals chosen independently then Σ is just the identity matrix.

2 Spectral Algorithms

Determinant Let $A \in \mathbb{R}^{n \times n}$, the determinant of A can be written as follows:

$$\det(A) = \sum_{\sigma} \prod_{i=1}^{n} A_{i,\sigma(i)} \operatorname{sgn}(\sigma).$$

where the sum is over all permutations σ of the numbers $1, \ldots, n$, and $\operatorname{sgn}(\sigma) \in \{+1, -1\}$. For a permutation σ , $\operatorname{sgn}(\sigma)$ is the parity of the number of swaps one needs to transform σ into the identity permutations. For example, for n = 4, $\operatorname{sgn}(1, 2, 3, 4) = +1$ because we need no swaps, $\operatorname{sgn}(2, 1, 3, 4) = -1$ because we can transform it to the identity just by swapping 1, 2 and $\operatorname{sgn}(3, 1, 2, 4) = +1$.

Properties of Determinant

• For a matrix $A \in \mathbb{R}^{n \times n}$, $\det(A) \neq 0$ if and only if the columns of A are linearly independent. Recall that for a set of vectors $v_1, \ldots, v_n \in \mathbb{R}^n$, we say they are linearly independent if for any set of coefficients c_1, \ldots, c_n

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0$$

only when $c_1 = c_2 = \cdots = c_n = 0$. In other words, v_1, \ldots, v_n are linearly independent if no v_i can be written as a linear combination of the rest of the vectors.

• For any matrix $A \in \mathbb{R}^{n \times n}$, with eigenvalues $\lambda_1, \ldots, \lambda_n$,

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

So, det(A) = 0 iff A has at least one zero eigenvalue. So, it follows from the previous fact that A has a zero eigenvalue iff columns of A are linearly independent.

• For any two square matrices $A, B \in \mathbb{R}^{n \times n}$,

$$\det(AB) = \det(A)\det(B).$$

Characteristic Polynomial For a matrix $A \in \mathbb{R}^{n \times n}$ we write $\det(xI - A)$ for an indeterminant (variable) x is called the characteristic polynomial of A. The roots of this polynomial are the eigenvalues of A. In particular,

$$\det(xI - A) = (x - \lambda_1)(x - \lambda_2)\dots(x - \lambda_n),$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. It follows from the above identity that for x = 0, $\det(-A) = \prod_{i=1}^{n} \lambda_i$ or equivalently, $\det(A) = \prod_{i=1}^{n} \lambda_i$.

Rank The rank of a matrix $A \in \mathbb{R}^{n \times n}$ is the number of nonzero eigenvalues of A. More generally, the rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the number of nonzero eigenvalues of A. Or in other words, it is the number of nonzero eigenvalues of AA^{T} .

PSD matrices We discuss several equivalent definitions of PSD matrices. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite (PSD) iff

- All eigenvalues of A are nonnegative
- A can be written as BB^{\intercal} for some matrix $B \in \mathbb{R}^{n \times m}$.
- $x^{\intercal}Ax > 0$ for all vectors $x \in \mathbb{R}^n$.
- $\det(A_{S,S}) \geq 0$ for all $S \subseteq \{1,\ldots,n\}$ where $A_{S,S}$ denotes the square submatrix of A with rows and columns indexed by S.

The following fact about PSD matrices is immediate. If $A \succeq 0$ is an $n \times n$ matrix, then for any matrix $C \in \mathbb{R}^{k \times n}$,

$$CAC^T \succ 0.$$

This is because for any vector $x \in \mathbb{R}^k$,

$$x^T C A C^T x = (C^T x)^T A (C^T x) = y^T A y \ge 0,$$

where $y = C^T x$.

For two symmetric $A, B \in \mathbb{R}^n$ we write $A \leq B$ if and only if $B - A \succeq 0$. In other words, $A \leq B$ if and only if for any vector $x \in \mathbb{R}^n$,

$$x^T A x \le x^T B x$$
.

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A, and $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n$ be the eigenvalues of B. If $A \leq B$, then for all i, $\lambda_i \leq \tilde{\lambda}_i$.

Nonsymmetric Matrices Any matrix $A \in \mathbb{R}^{m \times n}$ (for $m \leq n$) can be written as

$$A = \sum_{i=1}^{m} \sigma_i u_i v_i^{\mathsf{T}}$$

where

- $u_1, \ldots, u_m \in \mathbb{R}^m$ form an orthonormal set of vectors. These are called left singular vectors of A and they have the property, $u_i A = \sigma_i v_i$. These vectors are the eigenvectors of the matrix AA^{T} .
- $v_1, \ldots, v_m \in \mathbb{R}^n$ form an orthonormal set of vectors. Note that these vectors do not necessarily span the space. These vectors are eigenvectors of the matrix $A^{\mathsf{T}}A$.
- $\sigma_1, \ldots, \sigma_m$ are called the singular values of A. They are always real an nonnegative. In fact they are eigenvalues of the PSD matrix AA^{T} .

Rotation Matrix A matrix $R^{n \times n}$ is a rotation matrix iff $||Rx||_2 = ||x||_2$ for all vectors $x \in \mathbb{R}^n$. In other words, R as an *operator* preserves the norm of all vectors. Next, we discuss equivalent definitions of R being a rotation matrix. R is a rotation matrix iff

- $RR^{\intercal} = I$.
- All singular values of R are 1.
- Columns of R form an orthonormal set of vectors in \mathbb{R}^n .

Projection Matrix A symmetric matrix $P \in \mathbb{R}^{n \times n}$ is a projection matrix iff

- It can be written as $P = \sum_{i=1}^{k} v_i v_i^{\mathsf{T}}$ for some $1 \leq k \leq n$.
- All eigenvalues of P are 0 or 1.
- PP = P.

It follows from the spectral theorem that there is a unique projection matrix of rank n and that is the identity matrix. In general a projection matrix projects any given vector x to the linear subspace corresponding to span of the vectors v_1, \ldots, v_k .

Trace For a square matrix $A \in \mathbb{R}^{n \times n}$ we write

$$Tr(A) = \sum_{i=1}^{n} A_{i,i}$$

to denote the sum of entries on the diagonal of A. Next, we discuss several properties of the trace.

- Trace of A is equal to the sum of all eigenvalues of A.
- Trace is a linear operator, for any two square matrices $A, B \in \mathbb{R}^{n \times n}$

$$\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$$

 $\operatorname{Tr}(tA) = t\operatorname{Tr}(A), \forall t \in \mathbb{R}.$

- It follows by the previous fact that for a random matrix X, $\mathbb{E}[\operatorname{Tr}(X)] = \operatorname{Tr}(\mathbb{E}[X])$.
- For any pair of matrices $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$ such that AB is a square matrix we have

$$Tr(AB) = Tr(BA).$$

So, in particular, for any vector $v \in \mathbb{R}^n$,

$$\operatorname{Tr}(vv^{\mathsf{T}}) = \operatorname{Tr}(v^{\mathsf{T}}v) = ||v||^2.$$

• For any matrix $A \in \mathbb{R}^{m \times n}$

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n A_{i,j}^2 = \text{Tr}(AA^{\mathsf{T}}).$$

Matrix Chernoff Bound Let X be a random $n \times n$ PSD matrix. Suppose that $X \leq \alpha \mathbb{E}[X]$ with probability 1 for some $\alpha \geq 0$. Let X_1, \ldots, X_k be independent copies of X. Then, for any $0 < \epsilon < 1$,

$$\mathbb{P}\left[(1-\epsilon)\mathbb{E}\left[X\right] \leq \frac{1}{k}(X_1+\cdots+X_k) \leq (1+\epsilon)\mathbb{E}\left[X\right]\right] \geq 1-2ne^{-\epsilon^2k/4\alpha}.$$

3 Optimization

Convex Functions A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex on a set $S \subseteq \mathbb{R}^n$ if for any two points $x, y \in S$, we have

$$f\left(\frac{x+y}{2}\right) \le \frac{1}{2}(f(x) + f(y)).$$

We say f is concave if for any such $x, y \in S$, we have

$$f\left(f(\alpha x + (1 - \alpha)y\right) \ge \alpha f(x) + (1 - \alpha)f(y),$$

for any $0 \le \alpha \le 1$. There is an equivalent definition of convexity: For a function $f : \mathbb{R}^n \to \mathbb{R}$, the Hessian of $f, \nabla^2 f$ is a $n \times n$ matrix defined as follows:

$$(\nabla^2 f)_{i,j} = \partial_{x_i} \partial_{x_j} f$$

for all $1 \le i, j \le n$. We can show that f is convex over S if and only if for all $a \in S$,

$$\nabla^2 f \Big|_{x=a} \succeq 0.$$

For example, consider the function $f(x) = x^T A x$ for $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. Then, $\nabla^2 f = A$. So, f is convex (over \mathbb{R}^n) if and only if $A \succeq 0$.

For another example, let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = x^k$ for some integer $k \geq 2$. Then, $f''(x) = k(k-1)x^{k-2}$. If k is an even integer, $f''(x) \geq 0$ over all $x \in \mathbb{R}$, so f is convex over all real numbers. On the other hand, if k is an odd integer then $f''(x) \geq 0$ if and only if $x \geq 0$. So, in this f is convex only over non-negative reals.

Similarly, f is concave over S, if $\nabla^2 f\Big|_{x=a} \leq 0$ for all $a \in S$. For example, $x \mapsto \log x$ is concave over all positive reals.

Convex set We say a set $S \subseteq \mathbb{R}^n$ is convex if for any pair of points $x, y \in S$, the line segment connecting x to y is in S.

For example, let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function over a set $S \subseteq \mathbb{R}^n$. Let $t \in \mathbb{R}$, and define

$$T = \{x \in \mathbb{R}^n : f(x) \le t\}.$$

Then, T is convex. This is because if $x, y \in T$, then for any $0 \le \alpha \le 1$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \le \alpha t + (1 - \alpha)t = t$$

where the first inequality follows by convexity of f. So, $\alpha x + (1 - \alpha) \in T$ and T is convex.

Norms are Convex functions A norm $\|\cdot\|$ is defined as a function that maps \mathbb{R}^n to \mathbb{R} and satisfies the following three properties,

- i) ||x|| > 0 for all $x \in \mathbb{R}^n$,
- ii) $\|\alpha x\| = \alpha \|x\|$ for all $\alpha \ge 0$ and $x \in \mathbb{R}^n$,
- iii) Triangle inequality: $||x+y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$.

It is easy to see that any norm function is a convex function: This is because for any $x, y \in \mathbb{R}^n$, and $0 \le \alpha \le 1$,

$$\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\| = \alpha \|x\| + (1 - \alpha)\|y\|.$$

4 Useful Inequalities

• For real numbers, a_1, \ldots, a_n and nonnegative reals b_1, \ldots, b_n ,

$$\min_{i} \frac{a_i}{b_i} \le \frac{a_1 + \dots + a_n}{b_1 + \dots + b_n} \le \max_{i} \frac{a_i}{b_i}$$

• Cauchy-Schwartz inequality: For real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$,

$$\sum_{i=1}^{n} a_i \cdot b_i \le \sqrt{\sum_i a_i^2} \cdot \sqrt{\sum_i b_i^2}$$

There is an equivalent vector-version of the above inequality. For any two vectors $u, v \in \mathbb{R}^n$,

$$\sum_{i=1}^{n} u_i \cdot v_i = \langle u, v \rangle \le ||u|| \cdot ||v||$$

The equality in the above holds only when u, v are parallel.

• AM-GM inequality: For any n nonnegative real numbers a_1, \ldots, a_n ,

$$\frac{a_1 + \dots + a_n}{n} \ge (a_1 \cdot a_2 \cdot \dots a_n)^{1/n}.$$

• Relation between norms: For any vector $a \in \mathbb{R}^n$,

$$||a||_2 \le ||a||_1 \le \sqrt{n} \cdot ||a||_2$$

The right inequality is just Cauchy-Schwartz inequality.

• For any real numbers a_1, \ldots, a_n ,

$$(|a_1| + \dots + |a_n|)^2 \le n(a_1^2 + \dots + a_n^2).$$

This is indeed a special case of Cauchy-Schwartz inequality.

• For any real number $x, 1-x \le e^{-x}$. In this course we use $1-x \approx e^{-x}$ to simplify calculations.