Problem Set 3

Deadline: Nov 19th in gradescope

1) Let $\mathcal{H}:=\{h:[n] \rightarrow[k]\}$ be a family of pairwise independent hash functions and let $\mathcal{S}=\{\sigma:[n] \rightarrow$ $\{-1,+1\}\}$ be a family of 4 -wise independent hash functions. Sample $h \sim \mathcal{H}$ and $\sigma \sim \mathcal{S}$, the countsketch matrix $S_{h, \sigma} \in R^{k \times n}$ is defined as follows: The matrix has only one non-zero entry in every column j at $S_{h(j), j}$ and that is equal to $\sigma(j)$. Note that the matrix has only n nonzero entries altogether. Because of this for any matrix $A \in \mathbb{R}^{n \times d}, S_{h, \sigma} A$ can be computed in time $O(n n z(A))$ where as usual $n n z(A)$ is the number of non-zero entries of A. The countsketch matrix has numerous applications in approximate matrix multiplication, regression, etc. These applications mostly use the JL-property of countsketch matrix that we prove in this exercise.
a) Show that for any vector $x \in \mathbb{R}^{n}, \mathbb{E}\left[\left\|S_{h, \sigma} x\right\|^{2}\right]=\|x\|^{2}$. Here the randomness is over the randomness of h, σ.
b) Show that $\mathbb{E}\left[\|S x\|_{2}^{4}\right] \leq(1+2 / k)\|x\|_{2}^{4}$.
c) Use these to conclude that for any unit norm $x, \mathbb{E}\left[\left|\|S x\|_{2}^{2}-1\right|^{2}\right] \leq 2 / k$. In other words, the matrix S can be seen as a dimension reduction matrix to \mathbb{R}^{k} that preserve the norm of any unit norm vector x with a constant probability.
2) A Hadamard matrix $H \in\{-1,+1\}^{n \times n}$ is a matrix where the inner product of every (not equal) two rows of H are zero, i.e., for any $i \neq j$ we have $\sum_{k} H_{i, k} H_{j, k}=0$. For example,

$$
H_{2}=\left(\begin{array}{ll}
+1 & -1 \\
+1 & +1
\end{array}\right)
$$

In general, if A is a $k \times k$ Hadamard matrix you can construct $2 k \times 2 k$ Hadamard matrix by putting

$$
\left(\begin{array}{cc}
A & -A \\
A & A
\end{array}\right)
$$

a) Let H be an $n \times n$ Hadamard matrix. Prove that all singular values of H are equal to \sqrt{n}.
b) Let $A \in[-1,+1]^{n \times n}$ matrix, i.e., every entry of A is in the range $[-1,+1]$ such that at most $n^{2} / 8$ entries of A are different from H. Use the following theorem to prove that A has rank at least $\Omega(n)$.
Theorem 3.1 (Hoffman-Wielandt Inequality). Let $A, B \in \mathbb{R}^{n \times n}$ with singular values $\sigma_{1} \geq \cdots \geq \sigma_{n}$ and $\sigma_{1}^{\prime} \geq \cdots \geq \sigma_{n}^{\prime}$. Then,

$$
\sum_{i=1}^{n}\left|\sigma_{i}-\sigma_{i}^{\prime}\right|^{2} \leq\|A-B\|_{F}^{2}
$$

3) For a vector $u \in \mathbb{R}^{n}$, we write $u \otimes u$ to denote the vector in $\mathbb{R}^{n^{2}}$ where for any $1 \leq i, j \leq n,(u \otimes u)_{i n+j}=$ $u_{i} \cdot u_{j}$.
a) Show that for any pair of vectors $u, v \in \mathbb{R}^{n}$,

$$
\langle u \otimes u, v \otimes v\rangle=\langle u, v\rangle^{2}
$$

b) Let $A \in \mathbb{R}^{n \times n}$ be a PSD matrix, and let $B \in \mathbb{R}^{n \times n}$ be the matrix where $B_{i, j}=A_{i, j}^{2}$. Prove that B is PSD.
Hint: Use part (a) and that any matrix A is PSD iff it can be written as $A=C C^{\top}$ for some matrix $C \in \mathbb{R}^{n \times k}$, for some integer k.
4) In this problem we discuss a fast algorithm for approximately estimating the low rank approximation (up to an additive error) with respect to the Frobenius norm.
a) Let $A \in \mathbb{R}^{m \times n}$ and suppose we want to estimate $A v$ for a vector $v \in \mathbb{R}^{n}$. Here is a randomized algorithm for this task. Choose the i-th column of A, A_{i}, with probability

$$
p_{i}=\frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}
$$

and let $X=A_{i} v_{i} / p_{i}$. Show that $\mathbb{E}[X]=A v$. Calculate $\operatorname{Var}(X)=\mathbb{E}\left[\|X\|^{2}\right]-\|\mathbb{E} X\|^{2}$. Note that, with this definition, $\mathbb{E}[X]$ is a vector whereas $\operatorname{Var}(X)$ is a number.
b) Next, we use a similar idea to approximate A. For $1 \leq i \leq s$ let $X_{i}=\frac{A_{j}}{\sqrt{s p_{j}}}$ with probability p_{j} where $1 \leq j \leq n$. Let $X \in \mathbb{R}^{m \times s}$ and let X_{i} be the i-th columns of X. Note that $X X^{T}=\sum_{i=1}^{s} X_{i} X_{i}^{T}$. Show that

$$
\mathbb{E} X X^{T}=A A^{T}
$$

Show that $\mathbb{E}\left\|X X^{T}-A A^{T}\right\|_{F}^{2} \leq \frac{1}{s}\|A\|_{F}^{4}$.
5) Run a low-rank approximation on the "jecond.jpg" file in the website. How many singular values do you need to use to get a relatively good approximation of the image?
6) Extra Credit: Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ be a set of points of norm 1. For $\sigma>0$, let $G_{\sigma} \in \mathbb{R}^{n \times n}$ be the Gaussian kernel on P, i.e.,

$$
G_{\sigma}(i, j)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\left\|p_{i}-p_{j}\right\|^{2} / 2 \sigma}
$$

Prove that $G_{\sigma} \succeq 0$.

