CSE 521: Design and Analysis of Algorithms

Fall 2021

Problem Set 3

Deadline: Nov 19th in gradescope

- 1) Let $\mathcal{H} := \{h : [n] \to [k]\}$ be a family of pairwise independent hash functions and let $\mathcal{S} = \{\sigma : [n] \to \{-1, +1\}\}$ be a family of 4-wise independent hash functions. Sample $h \sim \mathcal{H}$ and $\sigma \sim \mathcal{S}$, the countsketch matrix $S_{h,\sigma} \in \mathbb{R}^{k \times n}$ is defined as follows: The matrix has only one non-zero entry in every column j at $S_{h(j),j}$ and that is equal to $\sigma(j)$. Note that the matrix has only n nonzero entries altogether. Because of this for any matrix $A \in \mathbb{R}^{n \times d}$, $S_{h,\sigma}A$ can be computed in time O(nnz(A)) where as usual nnz(A) is the number of non-zero entries of A. The countsketch matrix has numerous applications in approximate matrix multiplication, regression, etc. These applications mostly use the JL-property of countsketch matrix that we prove in this exercise.
 - a) Show that for any vector $x \in \mathbb{R}^n$, $\mathbb{E}\left[\|S_{h,\sigma}x\|^2\right] = \|x\|^2$. Here the randomness is over the randomness of h, σ .
 - b) Show that $\mathbb{E}\left[\|Sx\|_2^4\right] \le (1+2/k)\|x\|_2^4$.
 - c) Use these to conclude that for any unit norm x, $\mathbb{E}\left[|||Sx||_2^2 1|^2\right] \leq 2/k$. In other words, the matrix S can be seen as a dimension reduction matrix to \mathbb{R}^k that preserve the norm of any unit norm vector x with a constant probability.
- 2) A Hadamard matrix $H \in \{-1, +1\}^{n \times n}$ is a matrix where the inner product of every (not equal) two rows of H are zero, i.e., for any $i \neq j$ we have $\sum_k H_{i,k} H_{j,k} = 0$. For example,

$$H_2 = \begin{pmatrix} +1 & -1 \\ +1 & +1 \end{pmatrix}.$$

In general, if A is a $k \times k$ Hadamard matrix you can construct $2k \times 2k$ Hadamard matrix by putting

$$\begin{pmatrix} A & -A \\ A & A \end{pmatrix}$$

- a) Let H be an $n \times n$ Hadamard matrix. Prove that all singular values of H are equal to \sqrt{n} .
- b) Let $A \in [-1, +1]^{n \times n}$ matrix, i.e., every entry of A is in the range [-1, +1] such that at most $n^2/8$ entries of A are different from H. Use the following theorem to prove that A has rank at least $\Omega(n)$. **Theorem 3.1** (Hoffman-Wielandt Inequality). Let $A, B \in \mathbb{R}^{n \times n}$ with singular values $\sigma_1 \geq \cdots \geq \sigma_n$ and $\sigma'_1 \geq \cdots \geq \sigma'_n$. Then,

$$\sum_{i=1}^{n} |\sigma_i - \sigma'_i|^2 \le ||A - B||_F^2$$

- 3) For a vector $u \in \mathbb{R}^n$, we write $u \otimes u$ to denote the vector in \mathbb{R}^{n^2} where for any $1 \leq i, j \leq n$, $(u \otimes u)_{in+j} = u_i \cdot u_j$.
 - a) Show that for any pair of vectors $u, v \in \mathbb{R}^n$,

$$\langle u \otimes u, v \otimes v \rangle = \langle u, v \rangle^2.$$

b) Let $A \in \mathbb{R}^{n \times n}$ be a PSD matrix, and let $B \in \mathbb{R}^{n \times n}$ be the matrix where $B_{i,j} = A_{i,j}^2$. Prove that B is PSD.

Hint: Use part (a) and that any matrix A is PSD iff it can be written as $A = CC^{\intercal}$ for some matrix $C \in \mathbb{R}^{n \times k}$, for some integer k.

- 4) In this problem we discuss a fast algorithm for approximately estimating the low rank approximation (up to an additive error) with respect to the Frobenius norm.
 - a) Let $A \in \mathbb{R}^{m \times n}$ and suppose we want to estimate Av for a vector $v \in \mathbb{R}^n$. Here is a randomized algorithm for this task. Choose the *i*-th column of A, A_i , with probability

$$p_i = \frac{\|A_i\|^2}{\|A\|_F^2}$$

and let $X = A_i v_i / p_i$. Show that $\mathbb{E}[X] = Av$. Calculate $\operatorname{Var}(X) = \mathbb{E}[||X||^2] - ||\mathbb{E}X||^2$. Note that, with this definition, $\mathbb{E}[X]$ is a vector whereas $\operatorname{Var}(X)$ is a number.

b) Next, we use a similar idea to approximate A. For $1 \le i \le s$ let $X_i = \frac{A_j}{\sqrt{sp_j}}$ with probability p_j where $1 \le j \le n$. Let $X \in \mathbb{R}^{m \times s}$ and let X_i be the *i*-th columns of X. Note that $XX^T = \sum_{i=1}^s X_i X_i^T$. Show that

$$\mathbb{E}XX^T = AA^T.$$

Show that $\mathbb{E} \| X X^T - A A^T \|_F^2 \leq \frac{1}{s} \| A \|_F^4$.

- 5) Run a low-rank approximation on the "jecond.jpg" file in the website. How many singular values do you need to use to get a relatively good approximation of the image?
- 6) **Extra Credit:** Let $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ be a set of points of norm 1. For $\sigma > 0$, let $G_{\sigma} \in \mathbb{R}^{n \times n}$ be the Gaussian kernel on P, i.e.,

$$G_{\sigma}(i,j) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\|p_i - p_j\|^2/2\sigma}$$

Prove that $G_{\sigma} \succeq 0$.