
CSE 527

CAST: a clustering method with a
graph-theoretic basis

Larry Ruzzo

Talks this week

• Today - Dr. Terry Hwa, Professor of
Physics, UC San Diego "Complex
Transcriptional Logics From Simple
Molecular Interactions” 3:30, Hitchcock
132

• Fri - Me, “Improved Gene Selection for
Classification of Microarrays” 3:30 Loew
102

More Reading

• Paper on quantitative or computational
analysis of microarrays (clustering,
normalization, differential
expression,…)

• Again, send me a very short comment
on it, say by Monday

Graphs
• Vertices
• Edges
• G = (V, E)

• Why? Model simple pairwise relations,
e.g.
– Vertices = genes
– Edges = “similar” pairs of genes

Cliques

• K-clique is a set of k vertices, each of
which is connected (directly) to all the
others.

• Why? A “cluster” - all
“similar” to each other

Clustering -> Finding Cliques

• 2- cliques -- just edges, easy 4950

• 3-cliques -- triangles 161700

• 10-cliques -- hmmm…

• General -- gets big fast…

†

n
2

Ê

Ë
Á

ˆ

¯
˜

†

n
3

Ê

Ë
Á

ˆ

¯
˜

†

n
10

Ê

Ë
Á

ˆ

¯
˜

†

n
k

Ê

Ë
Á

ˆ

¯
˜ ≥

n
k

Ê

Ë
Á

ˆ

¯
˜

k

†

1.7 ¥1013

1002003004002´1084´1086´1088´1081´109

Polynomial vs
Exponential Growth

22n

2n/10

1000n2

Asymptotic Analysis
• How does run time grow as a function of

problem size?
n2 or 100 n2 + 100 n + 100 vs 22n

• Defn: f(n) = O(g(n)) iff there is a constant c s.t.
|f(n)| £ cg(n) for all sufficiently large n.

100 n2 + 100 n + 100 = O(n2) [e.g. c = 101]
 n2 = O(22n)
 22n is not O(n2)

Big-O Example

n Æ

f(n)

g’(n)

g(n)

f(n) = O(g(n)) =
O(g’(n))

Utility of Asymptotics
• “All things being equal,” smaller

asymptotic growth rate is better
• All things are never equal
• Even so, big-O bounds often let you

quickly pick most promising candidates
among competing algorithms

• Poly time algorithms often practical;
non-poly algorithms seldom are.

2nd problem: Noise

• Given graph H which is a collection of
(large) cliques, corrupt each
edge/nonedge with probability a < 1/2

• Call result G
• Problem: Find (approximate) H given G

as input

Simplified problem

• Given graph H which is a collection of
(large) disjoint cliques, corrupt each
edge/nonedge with probability a < 1/2

• Call result G
• Problem: Find (approximate) H given G

as input
• Success if |H’ ⊕ G | £ |H ⊕ G |

Notes

• Without noise, simplified problem is
very easy - any edge in clique leads to
rest

• Noise destroys that
• But - not totally

Ben-Dor, et al., JCB 1999

Main Result
For all alpha < 1/2, epsilon>0, delta > 0
there is an algorithm A and constant c
(depending on alpha, epsilon and delta)
such that for all clique graphs H with
disjoint cliques of minimum size at least
epsilon*n, A successfully recovers H’
from the alpha-corrupted version G of H
with probability > 1-delta, running in
time O(n2(log n)c)

Fine print

• For “reasonable” choices of parameters,
like epsilon = 10%, alpha = .25, the
analysis says c < about 600:

n2(log n)600

an unpleasant function whenever
log n ≥ 2 …

More Fine Print
• Many model assumptions are very

simplistic:
– “similarity” is all-or-none
– Disjoint cliques
– Independent errors
– Adding/deleting edges equi-probable
– Known error rate
– …

Nevertheless

• Interesting, since analysis is probably
pessimistic, and intuitions are valuable,
even if you never implement exactly this
algorithm

Key idea
• Suppose I know k elements of one clique v1,

v2, …, vk (a “core”)
• Given another vertex x, is it in same clique?

– If so, neighbor of k(1-alpha) core members
– If not, neighbor of k(alpha) core members

• Alpha < .5 < (1-alpha), so join if neighbor of
more than half of core. Probability of failure
declines exponentially with k.

How do you find a core?

• Brute force: try all subsets of size
O(log n)

• Too slow; more subtle - try subsets of
size O(log n / log log n) to classify a
sample of size O(log n)

Practical Heuristic

• Copen := the unassigned vertex of max
average affinity

• Repeat until no change
– U := unassigned vertex of max affinity to

Copen; if > thresh, add
– If none, v := vertex in Copen of min avg

affinity; if < thresh, remove
• Close this cluster & restart

Final pass

• Repeat until no change (or iteration
limit):
– Move each element to the cluster to which

it has max affinity

Overall

• Simple to implement
• Reasonably fast in practice
• Gave good results in many tests

Reference

A. Ben-Dor, R. Shamir, Z. Yakhini,
“Clustering Gene Expression Patterns”
Journal of Computational Biology, v 6 #
3/4 (1999) pp 281-297

