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’ Eisen’s Cluster

Software
(PNAS 1998)
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* Centroid-link hierarchical
clustering algorithm

* Reorder for display
* Decide on your own cluster!
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conditions

genes

Why Validate clusters?

* All clustering algorithms find “clusters™.
— Are they real?
— Are they good?

conditions

A cluster from Eisen
et al. (1998) on a
yeast data set

A simulated data set
with no intrinsic
clusters.
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Approaches to Cluster
Validation: External Criteria

 Agreement with an external “gold
standard” answer (rarely available)

* Uniformity of clusters w.r.t. related
external information, e.g. Gene
Ontology or MIPS categories

 Either is quantifiable in various ways --
Jaccard, Hubert, adjusted Rand indices,
relative entropy, hypergeometric, ...
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Approaches to Cluster
Validation: Internal Criteria

« “Compactness” & “separation”

* E.g. residual sum of squares to cluster
centers vs sums of squares between
centers

» E.g. Silhouette - average distance to
points in same cluster vs nearest other
cluster
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Silhouette

a(i) = avg to same
b(i) = avg to neighbor
s(i) = (b(i)-a(i))/ max(b(i),a(i))

aq: in= i ns=

e Ve A S e plor af & slacrznss rrane AR om e sl eeele et 18



Approaches to Cluster
Validation: Model-based

» Given (statistical) model of data, how
well does model fit

* E.g. look at likelihood ratio that data
could have been generated by one
model vs alternative

* More on this topic later in the quarter
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Our Methodology for
Algorithm Comparison

« A form of “Leave Out One Cross Validation”
— Cluster genes based on all but one condition.

— Use left-out condition to check cohesiveness of
clusters.

* |.e., within each cluster, how uniform are expression
levels in the left-out condition?

* Meaningful clusters should be more uniform that chance
aggregations

— Repeat for each condition
« Compare algorithms based on performance.
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Figure of Merit (FOM)

Experiments
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FOM measures uniformity of gene expression levels
In each cluster in the left-out experiment
(basically mean squared error)

Low FOM == High predictive power
Leave out each experiment in turn
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genes

“Figure of Merit”

Experimental conditions FOM(e,k) = mean squared

. 0 g m-1 deviation of expression
Cluster C,  |evel from cluster mean:
| & 2
g Cluster Ci FOM(G,k) = ; 2 (R(ga 8) - Au’Ci (8))
° i=1 geC;
n-1 v : Cluster C, i
R(g.e) FOM (k) ="y FOM (e,k)
e=0

In clusters formed, how

uniform are expression levels .
- . FOM(k) = FOM(k)-n/(n -k
in the left-out condition? adjFOM(k) = FOM(k) - n/(n - k)
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Other approaches

« S. Datta & S. Datta ‘03 -- look at
agreement between clusterings with all
data & leaving out different conditions

23



Three Successes

* We can distinguish clustered from non-
clustered data

* We can tell algorithms apart

» Better FOM generally signals better
clusters
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A simulated
data set with 5
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(ene expression data sets

« Ovarian cancer data set
(Michel Schummer, Institute of Systems Biology)

— Subset of data: 235 clones
24 experiments (cancer/normal tissue samples)
— 235 clones correspond to 4 genes

 Yeast cell cycle data (Cho et al 1998)
— 17 time points

— Subset of 384 genes associated with 5 phases of cell
cycle
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Results: ovary data
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« CAST, k-means and complete-link : best
performance
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Results: yeast cell cycle data

adjusted FOM
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Rat CNS data
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Rat CNS data
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FOM on the Barrett’s data
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FOM = Cluster Quality

* On ovary data:

— Lowest FOM clusters in good agreement with the
right answer

— Next lowest incorrectly split/merged true classes

 On Barrett's data, 10 clusters:

— the lowest FOM clusters (CAST & k-means
initialized with average-link) correctly grouped the
20 cytokeratins that passed the variation filter

— the next lowest FOM (average-link) did NOT
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FOM = Cluster Quality
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FOM = Cluster Quality

Hurbert score
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FOM Summary

« Simple quantitative methodology to
compare different clustering algorithms
on any data set without using any
external knowledge

 Reduced FOM generally signals
Improved clusters

» Omitting one condition doesn't destroy
cluster quality

36



FOM Summary, cont.

* All clustering algorithms not created
equal
« Some algorithm comparisons (on this data):

— CAST and k-means produce higher quality
clusters than the hierarchical algorithms

— Single-link has the worst performance
among the hierarchical algorithms
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Adjusted Rand Example

c#1(4) c#2(5) c#3(7) cH4(4)
class#1(2) 2 0 0 0
class#2(3) 0 0 0 3
class#3(5) 1 4 0 0
class#4(10) 1 1 7 1
2 3 4 7
a = 2 + 2 + 2 + 2 =31 Rand,R= a+d =0.789
a+d+c+d
4 5 7 4 —
b=l |+, ¥, ]*|,|-e=43-31=12 AdjustedRand=R E(R)=0-469
1- E(R)
2 3 5 10
c={ T 4[240 )4] D) -a=59-31=28
2\ 2) " (2 2)
d =

20
( )—a—b—c=119
2
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