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Eisen’s Cluster
Software

(PNAS 1998)

• Centroid-link hierarchical
clustering algorithm

• Reorder for display

• Decide on your own cluster!
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Why Validate clusters?

• All clustering algorithms find “clusters”:
– Are they real?

– Are they good?
conditions
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A cluster from Eisen
et al. (1998) on a
yeast data set

A simulated data set
with no intrinsic
clusters.
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Approaches to Cluster
Validation: External Criteria
• Agreement with an external “gold

standard” answer (rarely available)
• Uniformity of clusters w.r.t. related

external information, e.g. Gene
Ontology or MIPS categories

• Either is quantifiable in various ways --
Jaccard, Hubert, adjusted Rand indices,
relative entropy, hypergeometric, …
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Approaches to Cluster
Validation: Internal Criteria

• “Compactness” & “separation”

• E.g. residual sum of squares to cluster
centers vs sums of squares between
centers

• E.g. Silhouette - average distance to
points in same cluster vs nearest other
cluster
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Silhouette

a(i) = avg to same

b(i) = avg to neighbor

s(i) = (b(i)-a(i))/ max(b(i),a(i))
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Approaches to Cluster
Validation: Model-based

• Given (statistical) model of data, how
well does model fit

• E.g. look at likelihood ratio that data
could have been generated by one
model vs alternative

• More on this topic later in the quarter
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Our Methodology for
Algorithm Comparison

• A form of “Leave Out One Cross Validation”
– Cluster genes based on all but one condition.

– Use left-out condition to check cohesiveness of
clusters.

• I.e., within each cluster, how uniform are expression
levels in the left-out condition?

• Meaningful clusters should be more uniform that chance
aggregations

– Repeat for each condition

• Compare algorithms based on performance.
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Figure of Merit (FOM)

• FOM measures uniformity of gene expression levels
in each cluster in the left-out experiment
(basically mean squared error)

• Low FOM => High predictive power
• Leave out each experiment in turn
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“Figure of Merit”
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FOM(e,k) = mean squared
deviation of expression 
level from cluster mean:

In clusters formed, how
uniform are expression levels
in the left-out condition?
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Other approaches

• S. Datta & S. Datta ‘03 -- look at
agreement between clusterings with all
data & leaving out different conditions
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Three Successes

• We can distinguish clustered from non-
clustered data

• We can tell algorithms apart

• Better FOM generally signals better
clusters
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Are there clusters?
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Gene expression data sets

• Ovarian cancer data set
(Michel Schummer, Institute of Systems Biology)

– Subset of data: 235 clones

24 experiments (cancer/normal tissue samples)

– 235 clones correspond to 4 genes

• Yeast cell cycle data (Cho et al  1998)

– 17 time points

– Subset of 384 genes associated with 5 phases of cell
cycle
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Results: ovary data

• CAST, k-means and complete-link : best
performance
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Results: yeast cell cycle data

CAST, k-means: best performance
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Rat CNS data
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Rat CNS data
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FOM on the Barrett’s data
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FOM ª Cluster Quality

• On ovary data:
– Lowest FOM clusters in good agreement with the

right answer

– Next lowest incorrectly split/merged true classes

• On Barrett’s data, 10 clusters:
– the lowest FOM clusters (CAST & k-means

initialized with average-link) correctly grouped the
20 cytokeratins that passed the variation filter

– the next lowest FOM (average-link) did NOT
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FOM ª Cluster Quality

• To show: lower FOM fi higher
agreement with known gene categories.

• Ex: Wen et al.
categorized
genes in the rat
CNS data set
into 4 families
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FOM ª Cluster Quality

• To show: lower FOM fi higher
agreement with known gene categories.

• Ex: Wen et al.
categorized
genes in the rat
CNS data set
into 4 families
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FOM Summary

• Simple quantitative methodology to
compare different clustering algorithms
on any data set without using any
external knowledge

• Reduced FOM generally signals
improved clusters

• Omitting one condition doesn't destroy
cluster quality
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FOM Summary, cont.

• All clustering algorithms not created
equal

• Some algorithm comparisons (on this data):
– CAST and k-means produce higher quality

clusters than the hierarchical algorithms

– Single-link has the worst performance
among the hierarchical algorithms
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Adjusted Rand Example
c#1(4) c#2(5) c#3(7) c#4(4)

class#1(2) 2 0 0 0
class#2(3) 0 0 0 3
class#3(5) 1 4 0 0
class#4(10) 1 1 7 1
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