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Agenda

1. Techniques that can handle pseudoknots

e Graph Matching.
e lterative Loop Matching.
e Dynamic Programming.

2. Techniques for improving performance of CMs.

e Algorithm for reduction of memory consumption.



RNA secondary structure prediction CSE 527

Graph Matchings for RNA structure prediction

e Given a graph G = (V, F), a matching is a set of edges S C F such that
every vertex is adjacent to at most one edge.

e Maximum cardinality matching : Find matching S so that |S| is
maximized.

e Maximum weight matching : Given a weight function w : £ — R, find
a matching S so that ) __,w(e) is maximized.

e The maximum weight matching can be solved in O(|V|*) time and
O(|V]?) space (Gabow’s Algorithm).
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Graph Matchings for RNA structure prediction

e Given a sequence AGCCU, we construct the graph shown above.
e Different edges have different weights.

e Positive/negative weights allowed.
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Graph Matchings for RNA structure prediction

[Cary/Stormo 1995, Tabaska et al. 1998]

e Suppose that b1bs...b, is the RNA base sequence.

e Construct a graph G = (V, E), where V = {by,bs,...,b,}, and E =
{(’Uz',”Uj) 1 S Z,] S n}

e Suppose that for each base pair (v;,v;), we have a “score” w(v;,v;).
Find a matching S C E that maximizes Z(Ui’vj)esw(vi,vj).

e No “nesting” constraints - handles pseudoknots.
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Picking base scores

o If w(v;,v;) =1 for all (v;,v;), then we get algorithm to maximize the
number of base pairs.

e Pick w(v;,v;) based on base-pair likelihood ratio.
e Pick w(v;,v;) based on thermodynamic scores to minimize energy.

o Pick w(v;,v;) to be the mutual information between v; and v, to
maximize “covarying’ structure.

e Pick w(v;,v;) based on Helix plots.
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Helix plots

1. Assign a small positive 'good score’ for Watson-Crick and G-U pairs, and
larger negative 'bad score’ for other base paris, and a still larger negative
'paired gap’ score for penalizing single strand deletions. Construct matrix
with these initial scores.

2. Scan matrix for potential helices. Scores of base pairs comprising helices
of less than some minimum length are changed to the 'bad score’. Base
paris forming sufficiently long helices are are increased are increased by
adding bonus score proportional to the length of the helix.

3. Repeat for each sequence in the alignment. Add individual score matrix
to get a cumulative matrix.
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Advantages/Disadvantages of Matching based methods.

e (+) Can handle pseudoknots very easily.
e (+) Can incorporate (partial) experimental evidence.
e (-) MI/base-scores/uniform-weights does not perform well.

e (-) In general, generates many spurious base paris, and so the output
needs to be “filtered”.
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RNA structure by lterative Loop Matching

[Ruan/Stormo/Zhang 2004]

Ky

e Problem : Want to pick both sets of base pairs (top and bottom).
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RNA secondary structure by lterative Loop Matching

e Standard Dynamic programming algorithm to maximize number of base-
pairs cannot pick all the pairs (top and bottom) because it has a
pseudoknot structure.

e Oversimplified solution : Run the DP iteratively, after removing each set
of matched pairs

e First run of DP algo finds the top base pairs as the optimal set.

e Run (modified) DP algo again by disabling matches to the already
matched set.
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U m GAUGG Base pairs found by first loop of DP
UCCGA A@ Base pairs found by second loop of DP
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Iterated Loop Matching Algorithm

1. Prepare base-pairing scoring matrix B[l..n|[1l..n] from aligned
sequences. Set S + ¢.

2: Run the basic LM algorithm using B to produce a base-pair list L.

3. Identify all helices in L and combine helices separeted by small internal
loops or bulges. If no helix is found skip to step 7.

4. Compute score of each helix. Pick helix H with highest score and add
base pairs to S.

5. 'Remove’ positions of H from initial sequence. Update B accordingly.

6: Repeat steps 2-5 till no further bases remain.

7. Report the set S.
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Dynamic programming for pseudoknots

[Akutsu 2000]

e A dynamic programming algorithm for predicting pseudoknots

e Time complexity is O(n*) for simple pseudoknots and O(n>) for recursive
pseudoknots.

e Simplification of the tree adjoining grammar based algorithm of Uemura
et al. (removes need for tree adjoining grammar)
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Types of psuedoknots

Figure 1: Psuedoknots : Simple and recursive
e A simple pseudoknot has no base pairs between pairs in the pseudoknot
e A recursive pseudoknot may have unknotted intervening pairs

e Generalizations of pseudoknots include any structure with a planar graph
with bases connected to at most one non-adjacent base
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Algorithmic overview

e Looks for simple pseudoknots using DP on triples, not pairs

e DP equation for overall structure includes pseudoknot option when
finding max score

e Generalizing to recursive pseudoknots possible, but slower

e Proves that generalized pseudoknot solutions are NP-hard, although
author unsure if such structures exist naturally
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Covariance models for RNA structure prediction

e Find RNA structure alignment using a Stochastic Context Free Grammar.

e Can handle pairwise dependences in nonknotted structures.

e The CKY Algorithm (inside algorithm) is a dynamic programming
algorithm that guarantees finding the optimal solution in polynomial

time.

e Simple extensions allow one to find the top N solutions (also in
polynomial time).
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The CKY Algorithm

1. V (state, start, len) Qistate[Start, len] «+— —oo
2. for all len € 0ton —1 do

3: for all start €0 to n —len do

4: for all state € 0 to M do

5 Process Insert/Delete/Match States

6 if state is a bifurcation (rule : state — childg child;) then
7 Vsplit €1 to len — 1

Qistate[Start, len]

8: Qistate[Start, len] <— max _ _

Qichildg [Start, split] 4+ achig, [split, len] + log p(r
0: end if
10: end for

11: end for
12: end for
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Complexity of the CKY algorithm

e Time complexity O(n*- M + B - n?).

e Space complexity is O(n? - M).

— n is the length of the sequence.

— M is the number of states in the CM (M is ©(n)).
— B is the number of bifurcation states (B is ©(1)).

e Yields total time complexity of O(n?), space complexity of O(n?).
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Reducing Memory Requirements

[Eddy, 2002]

e Often, memory constraint is more of an issue than the time constraint.

e Large memory requirement leads to increased time requirement due to
Issues with caches etc.

e The paper gives a way of trading time for space : Memory requirement
goes from O(n?) to O(n?logn).
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A sketch of a simplified version for sequences

e Consider problem of aligning two sequences z1z2...xx and y1y2 ... Y-

e The dynamic programming relation is given by

/

F(t—1,j — 1)+ score for aligning (z;,y;)
F(i,j) =max < F(i—1,7) — cost of a gap

| F(i,5 +1) — cost of a gap

o F'(i,7) is the cost of best alignment of prefix z1z2...2; with y1y2...y;

e Can similary compute B(i,j) as the cost of best alighment of suffix
Li+1Li+2... TN and Yj+1Y5+2 .- - YmM.



RNA secondary structure prediction CSE 527

e F(i,7)+ B(i,7) is the cost of the best alighment that uses the cell (3, 7)

e \We know that every alignment must pass through row ¢ somewhere.

e [he Basic Idea :

1. Fix i ~ N/2.

2. Find optimal j so that (i,5) is part of best structure (i.e., j €
arg max (i, j) + B(i, ).

3. Now align sequence (1,%) to (1,7) and (¢ +1,N) to (j + 1, M).

e The new algorithm is at most 1 + % + % + -+ & 2 times as expensive
(in time) as the old algorithm.

e However, only requires O(IN) memory.
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