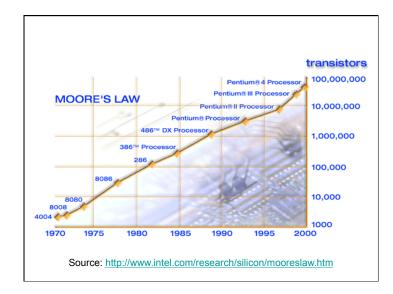
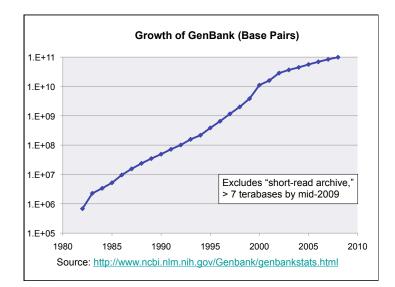
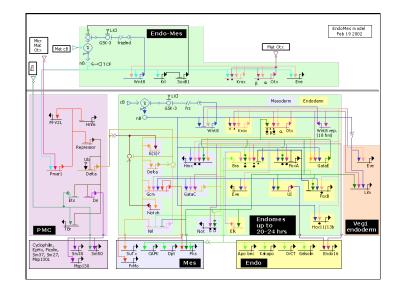

He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

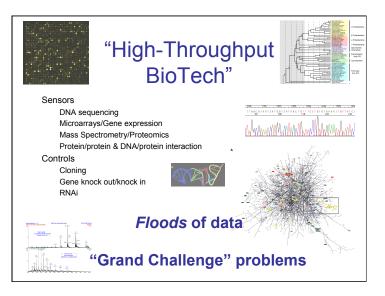
-- Chinese Proverb





Course Mechanics & Grading




The Human Genome Project

61 gggcgcagcg gcggccgcag accgagcccc gggcgcggca agaggcggcg ggagccggtg 121 gcggctcggc atcatgcgtc gagggcgtct gctggagatc gccctgggat ttaccgtgct 181 tttagcgtcc tacacgagcc atgggggggga cgccaatttg gaggctggga acgtgaagga 241 aaccagagee agtegggeea agagaagagg eggtggagga eaegaegege ttaaaggaee 301 caatgtctgt ggatcacgtt ataatgctta ctgttgccct ggatggaaaa ccttacctgg 361 cggaaatcag tgtattgtcc ccatttgccg gcattcctgt ggggatggat tttgttcgag 421 gccaaatatg tgcacttgcc catctggtca gatagctcct tcctgtggct ccagatccat 481 acaacactgc aatattcgct gtatgaatgg aggtagctgc agtgacgatc actgtctatg 541 ccagaaagga tacataggga ctcactgtgg acaacctgtt tgtgaaagtg gctgtctcaa 601 tqqaqqaaqq tqtqtqqccc caaatcqatq tqcatqcact tacqqatta ctqqacccca 661 gtgtgaaaga gattacagga caggcccatg ttttactgtg atcagcaacc agatgtgcca 721 gggacaactc agcgggattg tctgcacaaa acagctctgc tgtgccacag tcggccgagc 781 ctggggccac ccctgtgaga tgtgtcctgc ccagcctcac ccctgccgcc gtggcttcat 841 tecaaatate egeacgggag ettgtcaaga tgtggatgaa tgecaggeea teeeeggget 901 ctgtcaggga ggaaattgca ttaatactgt tgggtctttt gagtgcaaat gccctgctgg 961 acacaaactt aatgaagtgt cacaaaaatg tgaagatatt gatgaatgca gcaccattcc 1021 ...

Goals Basic biology Disease diagnosis/prognosis/treatment Drug discovery, validation & development Individualized medicine

What's all the fuss?

The human genome is "finished"... Even if it were, that's only the beginning Explosive growth in biological data is revolutionizing biology & medicine

"All pre-genomic lab techniques are obsolete"

(and computation and mathematics are crucial to post-genomic analysis)

CS Points of Contact & Opportunities

Scientific visualization

Gene expression patterns

Databases

Integration of disparate, overlapping data sources Distributed genome annotation in face of shifting underlying genomic coordinates, individual variation, ...

AI/NLP/Text Mining

Information extraction from text with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models, ...

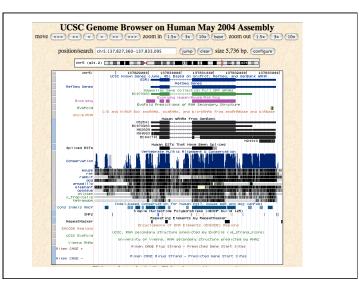
Machine learning

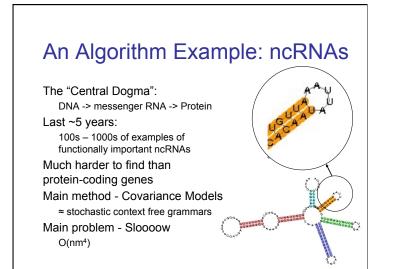
System level synthesis of cell behavior from low-level heterogeneous data (DNA seq, gene expression, protein interaction, mass spec,...)

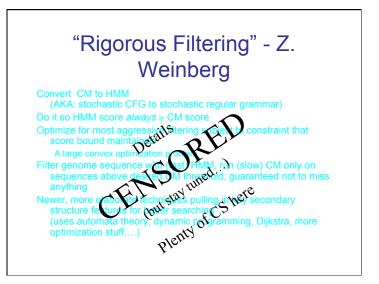
Algorithms

Computers in biology: Then & now

Trends in Biochemical Sciences Volume 12, 1987, Pages 279-280


08-10-10(16/08b0-0009(87)501-05-6 Copyright @ 1907 Autostoc by Elsevier Science 108


Microfile


Sequence alignment by word processor

D. Ross Boswell

Department of Haematological Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's I Road, Cambridge CB2 2Q1., UK

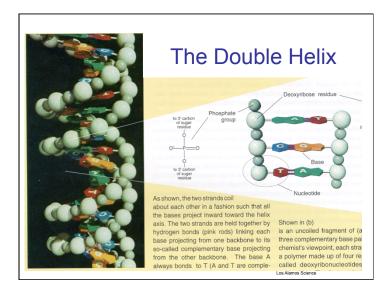
Results

Typically 200-fold speedup or more Finding dozens to hundreds of new ncRNA genes in many families Has enabled discovery of many new families

Newer, more elaborate techniques pulling in key secondary structure features for better searching (uses automata theory, dynamic programming, Dijkstra, more optimization stuff,...)

More Admin

Course Focus & Goals


Mainly sequence analysis

Algorithms for alignment, search, & discovery Specific sequences, general types ("genes", etc.) Single sequence and comparative analysis Techniques: HMMs, EM, MLE, Gibbs, Viterbi... Enough bio to motivate these problems including very light intro to modern biotech supporting them Math/stats/cs underpinnings thereof Applied to real data

A VERY Quick Intro To Molecular Biology

The Genome

The hereditary info present in every cell
DNA molecule -- a long sequence of *nucleotides* (A, C, T, G)
Human genome -- about 3 x 10⁹ nucleotides
The genome project -- extract & interpret genomic information, apply to genetics of disease, better understand evolution, ...

DNA

Discovered 1869 Role as carrier of genetic information - much later 4 "bases": adenine (A), cytosine (C), guanine (G), thymine (T) The Double Helix - Watson & Crick 1953 Complementarity $A \leftarrow T$ $C \leftarrow G$

Visualization: http://www.rcsb.org/pdb/explore.do?structureId=123D

Genetics - the study of heredity

A *gene* -- classically, an abstract heritable attribute existing in variant forms (*alleles*) *Genotype* vs *phenotype*

I.e., genes vs their outward manifestation Mendel

Each individual two copies of each gene Each parent contributes one (randomly) Independent assortment (approx, but useful)

Cells

Chemicals inside a sac - a fatty layer called the plasma membrane

Prokaryotes (bacteria, archaea) - little recognizable substructure

Eukaryotes (all multicellular organisms, and many single celled ones, like yeast) - genetic material in nucleus, other organelles for other specialized functions

Chromosomes

1 pair of (complementary) DNA molecules (+ protein wrapper)

Most prokaryotes: just 1 chromosome Eukaryotes - all cells have same number of chromosomes, e.g. fruit flies 8, humans & bats 46, rhinoceros 84, ...

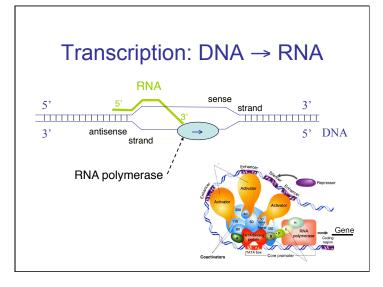
Mitosis/Meiosis

Most "higher" eukaryotes are *diploid* - have homologous pairs of chromosomes, one maternal, other paternal (exception: sex chromosomes)

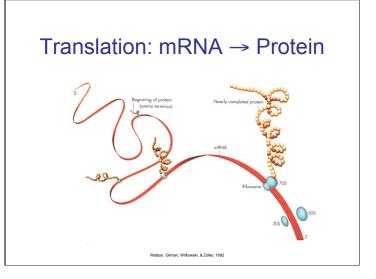
Mitosis - cell division, duplicate each chromosome, 1 copy to each daughter cell

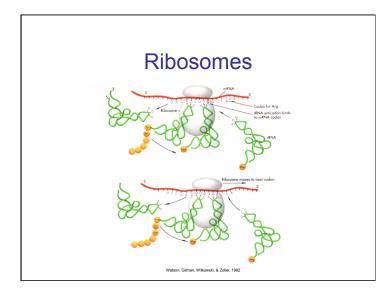
Meiosis - 2 divisions form 4 *haploid* gametes (egg/sperm)

Recombination/crossover -- exchange maternal/ paternal segments


Proteins

Chain of amino acids, of 20 kinds Proteins: the major functional elements in cells Structural/mechanical Enzymes (catalyze chemical reactions) Receptors (for hormones, other signaling molecules, odorants,...) Transcription factors


3-D Structure is crucial: the protein folding problem


The "Central Dogma"

Genes encode proteins DNA transcribed into messenger RNA mRNA translated into proteins Triplet code (codons)

(2	odo	ns 8) TL	-			
			115 0	x II	ie G	3e	er	
		Second Base						Arg : Arginine
		U	C	Α	G	1		Asn : Asparagine
		Phe	Ser	Tyr	Cys	U		Asp : Aspartic acid
	п	Phe	Ser	Tyr	Cvs	U C	1	Cys : Cysteine
	υ	Leu	Ser	Stop	Stop	Α	1	GIn : Glutamine
		Leu	Ser	Stop	Trp	G	1	Glu : Glutamic acid
		Leu	Pro	His	Arg	U	1	Gly : Glycine
	с	Leu	Pro	His	Arg	С	Base	His : Histidine
Base	C	Leu	Pro	Gln	Arg	Α		Ile : Isoleucine
		Leu	Pro	Gln	Arg	G		Leu : Leucine
a		lle	Thr	Asn	Ser	U	Third	Lys : Lysine
First	Α	lle	Thr	Asn	Ser	U C	<u>[</u>	Met : Methionine
	~	lle	Thr	Lys	Arg	Α		Phe : Phenylalanine
		Met/Start	Thr	Lys	Arg	G		Pro : Proline
	G	Val	Ala	Asp	Gly	U C		Ser : Serine
		Val	Ala	Asp	Glý			Thr : Threonine
	9	Val	Ala	Glu	Gly	Α		Trp : Tryptophane
		Val	Ala	Glu	Gly	G		Tyr : Tyrosine

Gene Structure

Transcribed 5' to 3'

Promoter region and transcription factor binding sites (usually) precede 5' end

Transcribed region includes 5' and 3' untranslated regions

In eukaryotes, most genes also include *introns*, spliced out before export from nucleus, hence before translation

Genome Sizes							
	Base Pairs	Genes					
Mycoplasma genitalium	580,073	483					
MimiVirus	1,200,000	1,260					
E. coli	4,639,221	4,290					
Saccharomyces cerevisiae	12,495,682	5,726					
Caenorhabditis elegans	95,500,000	19,820					
Arabidopsis thaliana	115,409,949	25,498					
Drosophila melanogaster	122,653,977	13,472					
Humans	3.3 x 10 ⁹	~25,000					

Genome Surprises

Humans have < 1/3 as many genes as expected

But perhaps more proteins than expected, due to *alternative splicing, alt start, alt end*

Protein-wise, all mammals are just about the same

But more individual variation than expected

And many more *non-coding RNAs* -- more than protein-coding genes, by some estimates

Many other non-coding regions are highly conserved, e.g., across all vertebrates

90% of DNA is transcribed (< 2% coding)

Complex, subtle "epigenetic" information

... and much more ...

Read one of the many intro surveys or books for much more info.