Seminars

CSE 527

Computational Biology
Autumn 2009
2. Sequence Alignment

This Week

Sequence alignment
Weekly "bio" interlude - DNA replication
More sequence alignment

CSE 590C
"Reading and Research in Computational Biology" Mondays, 3:30-4:30ish, EEB 026
http://www.cs.washington.edu/590c

GENOME 521

"COMBI"
Wednesdays, 1:30-2:50 Foege S060
http://www.gs.washington.edu/news/combi.htm

Sequence Alignment

Part I
Motivation, dynamic programming,
global alignment

Sequence Alignment

What
Why
A Simple Algorithm
Complexity Analysis
A better Algorithm:
"Dynamic Programming"

Sequence Similarity: What

GGACCA

TACTAAG
|: |: | |:
TCC-AAT

Sequence Similarity: What

G G A C C A

TACTAAG

TCCAAT

Sequence Similarity: Why
Most widely used comp. tools in biology New sequence always compared to sequence data bases
Similar sequences often have similar origin or function
Recognizable similarity after $10^{8}-10^{9} \mathrm{yr}$

Sequence Alignment

```
\(a c b c d b\) \(c a^{\prime} d b^{\prime} d\)
\[
\begin{aligned}
& a c--b c d b \\
& 1 \\
& -c a d b-d-
\end{aligned}
\]
```

Defn: An alignment of strings S, T is a pair of strings S^{\prime}, T^{\prime} (with spaces) s.t.
(1) $\left|S^{\prime}\right|=\left|T^{\prime}\right|$, and
($|\mathrm{S}|=$ "length of S ")
(2) removing all spaces leaves S, T

Terminology (CS, not necessarily Bio)

String: ordered list of letters TATAAG
Prefix: consecutive letters from front empty, T, TA, TAT, ..
Suffix: ... from end empty, G, AG, AAG, ...
Substring: ... from ends or middle empty, TAT, AA,
Subsequence: ordered, nonconsecutive TT, AAA, TAG, ...

Alignment Scoring

```
a c b c a b
c a d b d
```

a	c	-	-	b	c	d	b
-	c	a	d	b	-	d	-
-1	2	-1	-1	2	-1	2	-1
Value	$=$	$3 * 2$	$+5 *(-1)$	$=+1$			

The score of aligning (characters or spaces) $\mathbf{x} \& \mathrm{y}$ is $\sigma(\mathrm{x}, \mathrm{y})$.
Value of an alignment $\quad \sum_{i=1}^{\left|S^{\prime}\right|} \sigma\left(S^{\prime}[i], T^{\prime}[i]\right)$
An optimal alignment: one of max value

Optimal Alignment:
A Simple Algorithm
for all subseqs A of S, B of T s.t. $|A|=|B|$ do align $A[i]$ with $B[i], 1 \leq i \leq|A|$
align all other chars to spaces
compute its value retain the max
end

$$
\begin{array}{|ll|}
\hline S=a b c d & A=c d \\
T=w x y z & B=x z \\
-a b c-d & a-b c-d \\
w--x y z & -w-x y z \\
\hline
\end{array}
$$

output the retained alignment

Polynomial vs Exponential Growth

Analysis

Assume $|\mathrm{S}|=|\mathrm{T}|=\mathrm{n}$
Cost of evaluating one alignment: $\geq \mathrm{n}$
How many alignments are there:
pick n chars of S, T together $\binom{2 n}{n}$ say k of them are in S match these k to the k unpicked chars of T
Total time: $\geq n\binom{2 n}{n}>2^{2 n}$, for $n>3$
E.g., for $n=20$, time is $>2^{40}$ operations

How does run time grow as a function of problem size?

$$
n^{2} \text { or } 100 n^{2}+100 n+100 \text { vs } 2^{2 n}
$$

Defn: $f(n)=O(g(n))$ iff there is a constant c s.t.
$|f(n)| \leq c g(n)$ for all sufficiently large n.
$100 n^{2}+100 n+100=O\left(n^{2}\right)$ [e.g. $\left.c=101\right]$

$$
\mathrm{n}^{2}=\mathrm{O}\left(2^{2 n}\right)
$$

$$
2^{2 n} \text { is not } \mathrm{O}\left(\mathrm{n}^{2}\right)
$$

Big-O Example

Fibonacci Numbers
(recursion)

Utility of Asymptotics

"All things being equal," smaller asymptotic growth rate is better
All things are never equal
Even so, big-O bounds often let you quickly pick most promising candidates among competing algorithms
Poly time algs often practical; non-poly algs seldom are.
(Yes, there are exceptions.)

$$
\begin{gathered}
\text { Avoid repeated } \\
\text { subproblems by } \\
\text { tabulating their } \\
\text { solutions } \\
\Rightarrow \\
\text { Time }=O(n) \\
\text { (in this case) }
\end{gathered}
$$

Alignment by Dynamic Programming?

Common Subproblems?

Plausible: probably re-considering alignments of various small substrings unless we're careful.
Optimal Substructure?
Plausible: left and right "halves" of an optimal alignment probably should be optimally aligned (though they obviously interact a bit at the interface).
(Both made rigorous below.)

Optimal Substructure (In More Detail)

Optimal alignment ends in 1 of 3 ways: last chars of S \& T aligned with each other last char of S aligned with space in T last char of T aligned with space in S (never align space with space; $\sigma(-,-)<0$)
In each case, the rest of S \& T should be optimally aligned to each other

Optimal Alignment in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ via "Dynamic Programming"

Input: S, T, $|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal alignment
Easier to solve a "harder" problem:

$$
\begin{aligned}
V(i, j)= & \text { value of optimal alignment of } \\
& S[1], \ldots, S[i] \text { with } T[1], \ldots, T[j] \\
& \text { for all } 0 \leq i \leq n, 0 \leq j \leq m .
\end{aligned}
$$

Base Cases

$\mathrm{V}(\mathrm{i}, 0)$: first i chars of S all match spaces

$$
V(i, 0)=\sum_{k=1}^{i} \sigma(S[k],-)
$$

$\mathrm{V}(0, \mathrm{j})$: first j chars of T all match spaces

$$
V(0, j)=\sum_{k=1}^{j} \sigma(-, T[k])
$$

General Case

Opt align of $\mathrm{S}[1], \ldots, \mathrm{S}[i]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

for all $1 \leq i \leq n, 1 \leq j \leq m$.
27

Mismatch $=-1$
Example

Calculating One Entry

$$
V(i, j)=\max \left\{\begin{array}{ll}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j) & +\sigma(S[i],-) \\
V(i, j-1) & +\sigma(-, T[j])
\end{array}\right\}
$$

$$
\begin{array}{cc|}
& \begin{array}{c}
T[j] \\
\vdots \\
V(i-1, j-1) \\
\hline V(i-1, j) \\
\hline V[i] \\
V(i, j-1) \\
V(i, j) \\
\hline
\end{array}
\end{array}
$$

Example \quad| Mismatch $=-1$ |
| :--- |
| Match $=$ |

	j	0	1	2	3	4	5
i			c	a	d	b	d
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2					
3	b	-3	-	Score $(-, a)=-1$			
4	c	-4	a				
5	d	-5					
6	b	-6					

Example

i	j	0	1 c	2 a	3 d	4 b	5 d
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2					
3	b	-3	$\begin{array}{\|c\|c\|} \hline-\begin{array}{l} - \\ a \\ a_{c} \end{array} & \text { Score }(-, c)=-1 \\ -1 \end{array}$				
4	c	-4					
5	d	-5					
6	b	-6					

Mismatch $=-1$
Example

i	j	0	1 c	2 a	3 d	4 b	5 d	$\leftarrow \mathrm{T}$
0		0	-1	-2	-3	-4	-5	
1	a	-1	-1	1				Time $=$ O(mn)
2	c	-2	1					
3	b	-3						
4	c	-4						
5	d	-5						
6	b	-6						

Mismatch $=-1$
 Match = 2
 Example

i	j	0	1	2	3 d	4 b	5 d
0		0	-1	-2	-3	-4	-5
1	a	-1	-1	1	0	-1	-2
2	c	-2	1	0	0	-1	-2
3	b	-3	0	0	-1	2	1
4	c	-4	-1	-1	-1	1	1
5	d	-5	-2	-2	1	0	3
6	b	-6	-3	-3	0	3	2

Finding Alignments: Trace Back

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths $=3$ optimal alignments

i	j	0	$\begin{aligned} & 1 \\ & \\ & \hline \end{aligned}$	2 a	3 d	4 b	5 d
0		(0)	-1	-2	-3	-4	-5
1	a	-1.	-1	(1)	0	-1	-2
2	c	-2	(1)	0	(0)	-1	-2
3	b	-3	(0)	(0)	-1	(2)	1
4	c	-4	-1	-1	-1	(1)	1
5	d	-5	-2	-2	(1)	0	(3)
6	b	-6	-3	-3	0	(3)	(2)

Significance of Alignments

Is "42" a good score?
Compared to what?

Usual approach: compared to a specific "null model", such as "random sequences"

Complexity Notes

Time $=O(m n)$, (value and alignment)
Space $=O(m n)$
Easy to get value in Time $=O(m n)$ and Space $=O(\min (m, n))$

Possible to get value and alignment in Time $=O(m n)$ and Space $=O(\min (m, n))$ but tricky.

Overall Alignment Significance, II Empirical (via randomization)

Generate N random sequences (say $\mathrm{N}=10^{3}-10^{6}$)
Align x to each \& score
If k of them have better score than alignment of x to y, then the (empirical) probability of a chance alignment as good as observed $x: y$ alignment is $(k+1) /(N+1)$
e.g., if 0 of 99 are better, you can say "estimated p < . 01 "

How to generate "random" sequences?
Scores are often sensitive to sequence composition So uniform $1 / 20$ or $1 / 4$ is a bad idea Even background p_{i} can be dangerous Better idea: permute y N times

Generating Random Permutations

```
for (i=n-1; i>0; i--){
    j = random(0..i);
    swap X[i] <-> X[j];
}
```


All n ! permutations of the original data equally likely: A specific element will be last with prob 1/n; given that, a specific other element will be next-to-last with prob 1/(n-1), ...; overall: 1/(n!)

DNA Replication: Basics

Weekly Bio Interlude

DNA Replication

Issues \& Complications, I

1st ~ 10 nt's added are called the primer In simple model, DNA pol has 2 jobs: prime \& extend
Priming is error-prone
So, specialized primase does the priming; pol specialized for fast, accurate extension

Still doesn't solve the accuracy problem (hint: primase makes an RNA primer)

Issue 2: Rep Forks \& Helices

"Replication Fork": DNA double helix is progressively unwound by a DNA helicase, and both resulting single strands are duplicated
DNA polymerase synthesizes new strand 5' -> 3^{\prime} (reading its template strand 3^{\prime}-> 5^{\prime})
That means on one (the "leading") strand, DNA pol is chasing/pushing the replication fork
But on the other "lagging" strand, DNA pol is running away from it.

43

Lagging strand gets a series of "Okazaki fragments" of DNA (~200nt in eukaryotes) following each primer

pol starts here

The RNA primers are later removed by a

| primer | Okazaki |
| :---: | :---: | nuclease and DNA pol

fills gaps (more accurate than primase; primed by DNA from adjacent Okazaki frag
Fragments joined by ligase

Issue 4: Coord Lead/Lag

Alberts et al., Mol. Biol. of the Cell, 3rd ed, p258

(B)

Figure 5-19bc Molecular Biology of the Cell 5 /e (©) Garland Science 2008
newly synthesized
leading strand

(C)

Issue 5: Twirls \& Tangles

Unwinding helix (~10 nucleotides per turn) would cause stress. Topoisomerase I cuts DNA backbone on one strand, allowing it to spin about the remaining bond, relieving stress
Topoisomerase II can cut \& rejoin both strands, after allowing another double strand to pass through the gap, de-tangling it.

Issue 6: Proofreading

Error rate of pol itself is $\sim 10^{-4}$, but overall rate is 10^{-9}, due to proofreading \& repair, e.g.
pol itself can back up \& cut off a mismatched base if one happens to be inserted
priming the new strand is hard to do accurately, hence RNA primers, later removed \& replaced
other enzymes scan helix for "bulges" caused by base mismatch, figure out which strand is original, cut away new (faulty) copy; DNA pol fills gap
which strand is original? Bacteria: "methylate" some A's, eventually. Euks: strand nicking

Replication Summary

Speed: 50 (eukaryotes) to
500 (prokaryotes) bp/sec
Accuracy: 1 error per $10^{9} \mathrm{bp}$
Complex \& highly optimized
Highly similar across all living cells
More info:
Alberts et al., Mol. Biol. of the Cell

Sequence Alignment

Part II
Local alignments \& gaps

Variations

Local Alignment

Preceding gives global alignment, i.e. full length of both strings;
Might well miss strong similarity of part of strings amidst dissimilar flanks
Gap Penalties
10 adjacent spaces cost 10 x one space?
Many others

Local Alignment

Optimal local alignment of strings S \& T: Find substrings A of S and B of T having max value global alignment

$$
\begin{array}{ll}
S=\operatorname{abcxde} x & A=c x d e \\
T=x x \times c d e & B=c-d e \quad \text { value }=5
\end{array}
$$

Local Alignment: Motivations

```
"Interesting" (evolutionarily conserved,
functionally related) segments may be a small
part of the whole
    "Active site" of a protein
    Scattered genes or exons amidst "junk", e.g. retroviral
        insertions, large deletions
    Don't have whole sequence
Global alignment might miss them if flanking
junk outweighs similar regions
```


Local Alignment: "Obvious" Algorithm

for all substrings A of S and B of T :
Align A \& B via dynamic programming
Retain pair with max value
end ;
Output the retained pair
Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ choices for $\mathrm{A}, \mathrm{O}\left(\mathrm{m}^{2}\right)$ for B , $\mathrm{O}(\mathrm{nm})$ for DP, so $\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~m}^{3}\right)$ total.
[Best possible? Lots of redundant work...]

Local Alignment in $\mathrm{O}(\mathrm{nm})$ via Dynamic Programming

Input: $\mathrm{S}, \mathrm{T},|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal local alignment
Better to solve a "harder" problem for all $0 \leq i \leq n, 0 \leq j \leq m$:
$V(\mathrm{i}, \mathrm{j})=$ max value of opt (global)
alignment of a suffix of S[1], ..., S[i]
with a suffix of T[1], ..., T[j]
Report best i,j

Base Cases

Assume $\sigma(x,-) \leq 0, \sigma(-, x) \leq 0$
$V(i, 0)$: some suffix of first i chars of S; all match spaces in T ; best suffix is empty

$$
\begin{gathered}
V(i, 0)=0 \\
V(0, j): \text { similar } \\
V(0, j)=0
\end{gathered}
$$

General Case Recurrences

Opt suffix align $\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{i}]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

Opt align of

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Scoring Local Alignments

	j	0	1	2	3	4	5	6
i			x	x	x	c	d	e
0		0	0	0	0	0	0	0
1	a	0						
2	b	0						
3	c	0						
4	x	0						
5	d	0						
6	e	0						
7	x	0						

Finding Local Alignments

	j	0	1	2	3	4	5	6
i			x	x	x	c	d	e
0		0	0	0	0	0	0	0
1	a	0	0	0	0	0	0	0
2	b	0	0	0	0	0	0	0
3	c	0	0	0	0	2	1	0
4	x	0	2	2	2	1	1	0
5	d	0	1	1	1	1	3	2
6	e	0	0	0	0	0	2	5
7	x	0	2	2	2	1	1	4

Again, arrows follow max

Notes

Time and Space $=O(m n)$
Space $O(\min (m, n))$ possible with time $\mathrm{O}(\mathrm{mn})$, but finding alignment is trickier

Local alignment: "Smith-Waterman"
Global alignment: "Needleman-Wunsch"

Alignment With Gap Penalties

Gap: maximal run of spaces in S^{\prime} or T^{\prime}

$$
\begin{array}{ll}
\text { ab--ddc-d } & 2 \text { gaps in } S^{\prime} \\
a---d d c b d & 1 \text { gap in } T^{\prime}
\end{array}
$$

Motivations, e.g.:
mutation might insert/delete several or even many residues at once
matching cDNA (no introns) to genomic DNA (exons and introns)
some parts of proteins less critical

A Protein Structure: (Dihydrofolate Reductase)

Gap Penalties

Score $=\mathrm{f}$ (gap length)
Kinds, \& best known alignment time

general		$\mathrm{O}\left(\mathrm{n}^{3}\right)$
convex	\perp	$\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
affine	\longmapsto	$\mathrm{O}\left(\mathrm{n}^{2}\right)[$ really, $\mathrm{O}(\mathrm{mn})]$

Sequence Evolution

"Nothing in Biology Makes Sense Except in the Light of Evolution" - Theodosius Dobzhansky, 1973

Changes happen at random
Deleterious/neutral/advantageous changes unlikely/ possibly/likely spread widely in a population
Changes are less likely to be tolerated in positions involved in many/close interactions, e.g. enzyme binding pocket
protein/protein interaction surface

Global Alignment with Affine Gap Penalties

$V(\mathrm{i}, \mathrm{j})=$ value of opt alignment of $\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{i}]$ with $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$
$G(i, j)=\ldots$, s.t. last pair matches $S[i]$ \& $T[j]$
$F(\mathrm{i}, \mathrm{j})=$..., s.t. last pair matches $S[\mathrm{i}]$ \& -
$E(i, j)=\ldots$, s.t. last pair matches $-\& T[j]$

Time: $\mathrm{O}(\mathrm{mn})$ [calculate all, O(1) each]

Affine Gap Algorithm

Gap penalty $=\mathrm{g}+\mathrm{s}^{*}$ (gap length), $\mathrm{g}, \mathrm{s} \geq 0$
$V(\mathrm{i}, 0)=\mathrm{E}(\mathrm{i}, 0)=\mathrm{V}(0, \mathrm{i})=\mathrm{F}(0, \mathrm{i})=-\mathrm{g}-\mathrm{i}^{*} \mathrm{~S}$
$V(i, j)=\max (G(i, j), F(i, j), E(i, j))$
$G(i, j)=V(i-1, j-1)+\sigma(S[i], T[j])$
$F(i, j)=\max (F(i-1, j)-s, V(i-1, j)-g-s)$
$E(i, j)=\max (E(i, j-1)-s, V(i, j-1)-g-s)$
old gap new gap

Summary

Functionally similar proteins/DNA often have recognizably similar sequences even after eons of divergent evolution
Ability to find/compare/experiment with "same" sequence in other organisms is a huge win
Surprisingly simple scoring works well in practice: score positions separately \& add, possibly w/ fancier gap model like affine
Simple "dynamic programming" algorithms can find optimal alignments under these assumptions in poly time (product of sequence lengths)
This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology

