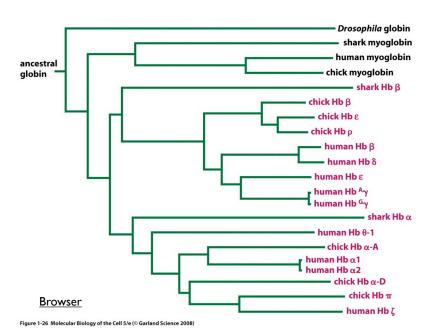
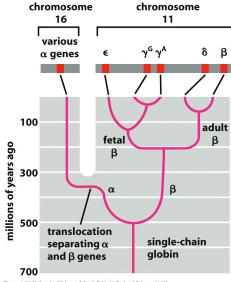
CSE 527 Autumn 2009 4: MLE, EM



FYI: Hemoglobin History



Browser

Figure 4-87 Molecular Biology of the Cell 5/e (© Garland Science 2008)

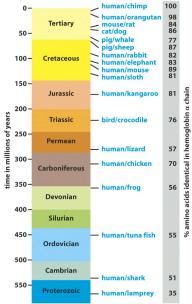


Figure 1-52 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Outline

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

Next: Motif description & discovery

Learning From Data: **MLE**

Maximum Likelihood Estimators

5

Probability Basics, I

Ex.

Ex.

Sample Space

$$\{1, 2, \dots, 6\}$$

 \mathbb{R}

Distribution

$$p_1, \dots, p_6 \ge 0; \sum_{1 \le i \le 6} p_i =$$

$$p_1, \dots, p_6 \ge 0; \sum_{1 \le i \le 6} p_i = 1$$
 $f(x) >= 0; \int_{\mathbb{R}} f(x) dx = 1$

e.g.

$$p_1 = \dots = p_6 = 1/6$$

$$p_1 = \dots = p_6 = 1/6$$
 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$

Probability Basics, II

Expectation

$$E(g) = \sum_{1 \le i \le 6} g(i)p$$

$$E(g) = \sum_{1 \le i \le 6} g(i)p_i \qquad E(g) = \int_{\mathbb{R}} g(x)f(x)dx$$

Population

$$\mu = \sum_{1 \le i \le 6} ip$$

$$\mu = \sum_{1 \le i \le 6} i p_i \qquad \qquad \mu = \int_{\mathbb{R}} x f(x) dx$$

$$\sigma^2 = \sum_{1 \le i \le c} (i - \mu)^2$$

$$\sigma^2 = \sum_{1 \le i \le 6} (i - \mu)^2 p_i \qquad \sigma^2 = \int_{\mathbb{R}} (x - \mu)^2 f(x) dx$$

Sample

$$\bar{x} = \sum_{1 \le i \le n} x_i / n$$

$$\bar{s}^2 = \sum_{1 \le i \le n} (x_i - \bar{x})^2 / n$$

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .

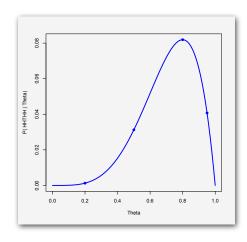
E.g.: Given sample HHTTTTHHTHTTTHH of (possibly biased) coin flips, estimate

 θ = probability of Heads

Likelihood Function

Probability of HHTHH, given $P(H) = \theta$:

θ	θ⁴(Ι-θ)			
0.2	0.0013			
0.5	0.0313			
0.8	0.0819			
0.95	0.0407			



Likelihood

 $P(x \mid \theta)$: Probability of event x given model θ Viewed as a function of x (fixed θ), it's a *probability* E.g., $\Sigma_x P(x \mid \theta) = I$

Viewed as a function of θ (fixed x), it's a likelihood E.g., Σ_{θ} P(x | θ) can be anything; relative values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHTHH | .6) > P(HHTHH | .5),

I.e., event HHTHH is more likely when θ = .6 than θ = .5 And what θ make HHTHH most likely?

10

Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Example I

 $n \text{ coin flips}, x_1, x_2, ..., x_n; \quad n_0 \text{ tails}, n_1 \text{ heads}, \quad n_0 + n_1 = n;$ $\theta = \text{probability of heads}$

$$L(x_1,x_2,\ldots,x_n\mid\theta) = (1-\theta)^{n_0}\theta^{n_1}$$

$$\log L(x_1,x_2,\ldots,x_n\mid\theta) = n_0\log(1-\theta) + n_1\log\theta$$

$$\frac{\partial}{\partial\theta}\log L(x_1,x_2,\ldots,x_n\mid\theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$$

Setting to zero and solving:

 $\hat{\theta} = \frac{n_1}{n}$

Observed fraction of successes in sample is MLE of success probability in populatio

(Also verify it's max, not min, & not better on boundary)

13

15

Ex. 2: $x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu \text{ unknown}$

$$L(x_1, x_2, \dots, x_n | \theta) = \prod_{1 \le i \le n} \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$$

$$\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi - \frac{(x_i - \theta)^2}{2}$$

$$\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} (x_i - \theta)$$

And verify it's max, not min & not better

on boundary

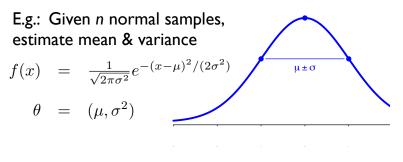
$$= \left(\sum_{1 \le i \le n} x_i\right) - n\theta = 0$$

$$\hat{\theta} = \left(\sum_{1 \le i \le n} x_i\right)/n = \bar{x}$$

Sample mean is MLE of population mean

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .



Ex 3: $x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both unknown

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} \frac{(x_i - \theta_1)}{\theta_2} = 0$$

$$\hat{\theta}_1 = \left(\sum_{1 \le i \le n} x_i\right) / n = \bar{x}$$

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$

$$\hat{\theta}_2 = \left(\sum_{1 \le i \le n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2$$

A consistent, but *biased* estimate of population variance. (An example of *overfitting*.) Unbiased estimate is:

I.e., $\lim_{n\to\infty}$ = correct

$$\hat{\theta}_2' = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n - 1}$$

Moral: MLE is a great idea, but not a magic bullet

17

Aside: Is it Biased? Why?

Is it? Yes. As an extreme, when n = 1, $\hat{\theta}_2 = 0$.

Why? A bit harder to see, but think about n = 2. Then $\hat{\theta}_1$ is exactly between the two sample points, the position that exactly minimizes the expression for $\hat{\theta}_2$. Any other choices for θ_1 , θ_2 make the likelihood of the observed data slightly lower. But it's actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean, so the MLE $\hat{\theta}_2$ systematically underestimates θ_2 .

More Complex Example

This?

Or this?

(A modeling decision, not a math problem..., but if later, what math?)

18

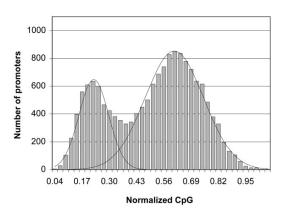
19

EM

The Expectation-Maximization Algorithm

A Real Example:

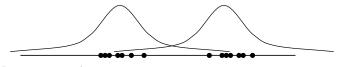
CpG content of human gene promoters



"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

21

Gaussian Mixture Models / Model-based Clustering



Parameters θ

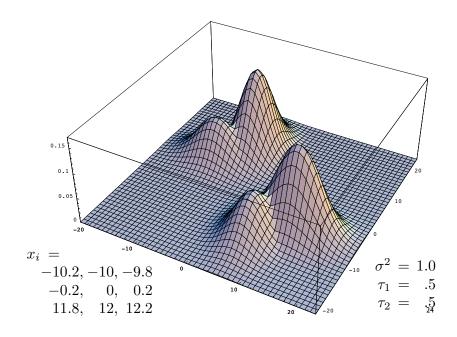
means μ_1 variances σ_1^2

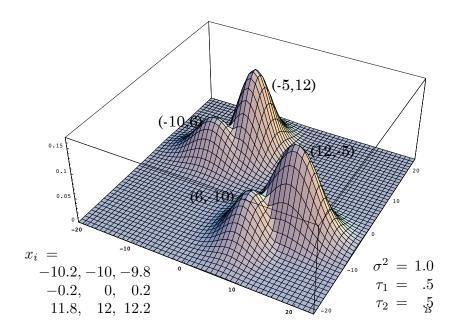
mixing parameters au_1 $au_2=1- au_1$

P.D.F. $f(x|\mu_1, \sigma_1^2)$ $f(x|\mu_2, \sigma_2^2)$

Likelihood

 $L(x_1, x_2, \dots, x_n | \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2)$ No closed-form $= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$ max





A What-If Puzzle

Likelihood
$$L(x_1, x_2, \dots, x_n | \overbrace{\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2}^{\theta})$$

$$= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$$

Messy: no closed form solution known for finding θ maximizing L

But what if we knew the
$$z_{ij} = hidden data$$
?

$$z_{ij} = \left\{ egin{array}{ll} 1 & \mbox{if } x_i \ \mbox{drawn from } f_j \ \ \mbox{otherwise} \end{array}
ight.$$

2

28

EM as Egg vs Chicken

IF z_{ij} known, could estimate parameters θ

E.g., only points in cluster 2 influence $\mu_2,\,\sigma_2$

IF parameters θ known, could estimate z_{ij}

E.g., if
$$|x_i - \mu_1|/\sigma_1 << |x_i - \mu_2|/\sigma_2$$
, then $z_{i1} >> z_{i2}$

But we know neither; (optimistically) iterate:

E: calculate expected z_{ij} , given parameters M: calc "MLE" of parameters, given $E(z_{ij})$

Overall, a clever "hill-climbing" strategy

Simple Version: "Classification EM"

If $z_{ij} < .5$, pretend it's 0; $z_{ij} > .5$, pretend it's I

I.e., classify points as component 0 or 1

Now recald θ , assuming that partition

Then recalc z_{ij} , assuming that $\boldsymbol{\theta}$

Then re-recale θ , assuming new z_{ij} , etc., etc.

"Full EM" is a bit more involved, but this is the crux.

Full EM

 x_i 's are known; θ unknown. Goal is to find MLE θ of:

$$L(x_1,\ldots,x_n\mid heta)$$
 (hidden data likelihood)

Would be easy if z_{ij} 's were known, i.e., consider:

$$L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2}\mid heta)$$
 (complete data likelihood)

But z_{ij} 's aren't known.

Instead, maximize expected likelihood of visible data

$$E(L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2}\mid\theta)),$$

where expectation is over distribution of hidden data (z_{ij}) 's)

The E-step: Find $E(Z_{ii})$, i.e. $P(Z_{ii}=1)$

Assume θ known & fixed

A (B): the event that x_i was drawn from f_1 (f₂). P(1)

D: the observed datum x_i Expected value of z_{i1} is P(A|D)

30

Complete Data Likelihood

Recall:

$$z_{1j} \ = \ \left\{ \begin{array}{ll} 1 & \mbox{if } x_1 \mbox{ drawn from } f_j \\ 0 & \mbox{otherwise} \end{array} \right.$$

so, correspondingly,

$$L(x_1, z_{1j} \mid \theta) = \begin{cases} \tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\ \tau_2 f_2(x_1 \mid \theta) & \text{otherwise} \end{cases}$$

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta)$$

Idea 2 (Better):

$$L(x_1, z_{1j} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}}$$

M-step:

Find θ maximizing E(log(Likelihood))

(For simplicity, assume
$$\sigma_1 = \sigma_2 = \sigma; \tau_1 = \tau_2 = .5 = \tau$$
)
$$L(\vec{x}, \vec{z} \mid \theta) = \prod_{1 \leq i \leq n} \underbrace{\frac{\tau}{\sqrt{2\pi\sigma^2}}} \exp\left(-\sum_{1 \leq j \leq 2} z_{ij} \frac{(x_i - \mu_j)^2}{(2\sigma^2)}\right)$$

$$E[\log L(\vec{x}, \vec{z} \mid \theta)] = E\left[\sum_{1 \leq i \leq n} \left(\log \tau - \frac{1}{2}\log 2\pi\sigma^2 - \sum_{1 \leq j \leq 2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)\right]$$

$$= \sum_{1 \leq i \leq n} \left(\log \tau - \frac{1}{2}\log 2\pi\sigma^2 - \sum_{1 \leq j \leq 2} E[z_{ij}] \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)$$

Find θ maximizing this as before, using $E[z_{ij}]$ found in E-step. Result:

$$\mu_j = \sum_{i=1}^n E[z_{ij}] x_i / \sum_{i=1}^n E[z_{ij}]$$
 (intuit: avg, weighted by subpop prob)

2 Component Mixture

$$\sigma_1 = \sigma_2 = 1; \ \tau = 0.5$$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	z11		5.11E-12		1.00E+00		1.00E+00	
x2	-5	z21		2.61E-23		1.00E+00		1.00E+00	
х3	-4	z31		1.33E-34		9.98E-01		1.00E+00	
x4	0	z41		9.09E-80		1.52E-08		4.11E-03	
x5	4	z51		6.19E-125		5.75E-19		2.64E-18	
х6	5	z61		3.16E-136		1.43E-21		4.20E-22	
x7	6	z71		1.62E-147		3.53E-24		6.69E-26	

33

EM Issues

Under mild assumptions (sect 11.6), EM is guaranteed to increase likelihood with every E-M iteration, hence will converge.

But may converge to local, not global, max. (Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often applied to NP-hard problems (including clustering, above, and motif-discovery, soon)

Nevertheless, widely used, often effective

EM Summary

Fundamentally a max likelihood parameter estimation problem
Useful if analysis is more tractable when 0/I hidden data z known
Iterate:

E-step: estimate E(z) for each z, given θ M-step: estimate θ maximizing $E(\log \text{likelihood})$ given E(z) [where " $E(\log L)$ " is wrt random $z \sim E(z) = p(z=1)$]

34