CSE 527 Autumn 2009

5 – Motifs: Representation & Discovery

Outline

Previously: Learning from data

MLE: Max Likelihood Estimators

EM: Expectation Maximization (MLE w/hidden data)

These Slides:

Bio: Expression & regulation

Expression: creation of gene products

Regulation: when/where/how much of each gene product; complex and critical

Comp: using MLE/EM to find regulatory motifs in biological sequence data

Gene Expression & Regulation

Gene Expression

Recall a gene is a DNA sequence for a protein To say a gene is *expressed* means that it is *transcribed* from DNA to RNA the mRNA is *processed* in various ways is *exported* from the nucleus (eukaryotes) is *translated* into protein A key point: not all genes are expressed all the time, in all cells, or at equal levels

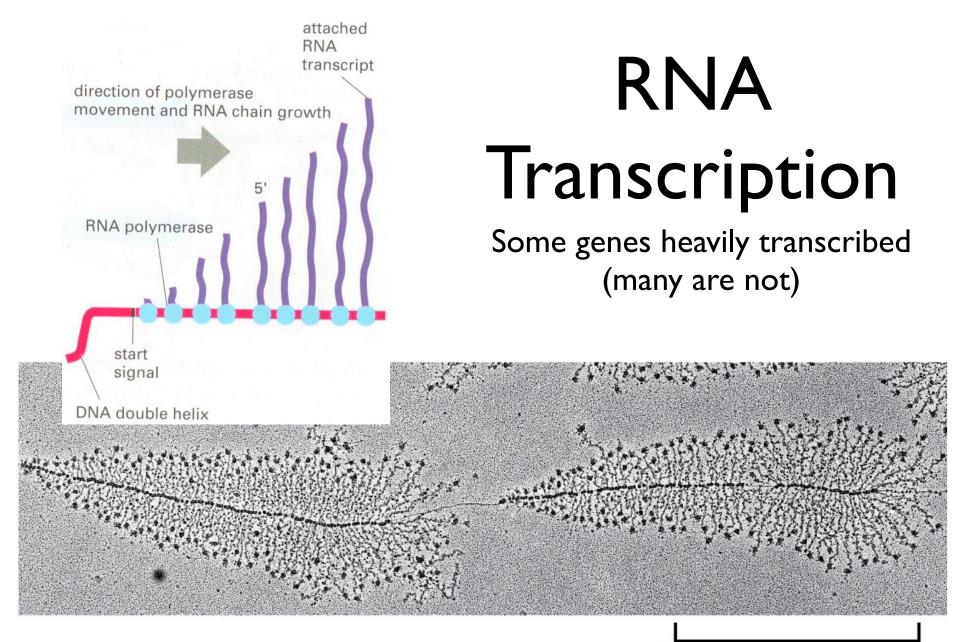


Figure 6-9 Molecular Biology of the Cell 5/e (© Garland Science 2008)

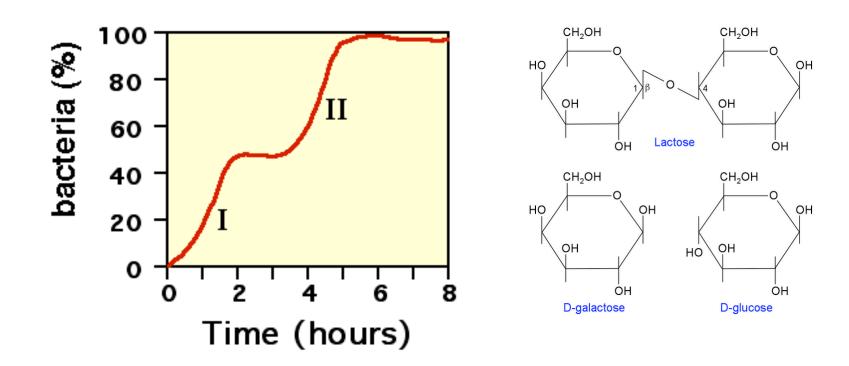
Regulation

In most cells, pro- or eukaryote, easily a 10,000-fold difference between least- and most-highly expressed genes

Regulation happens at all steps. E.g., some genes are highly transcribed, some are not transcribed at all, some transcripts can be sequestered then released, or rapidly degraded, some are weakly translated, some are very actively translated, ...

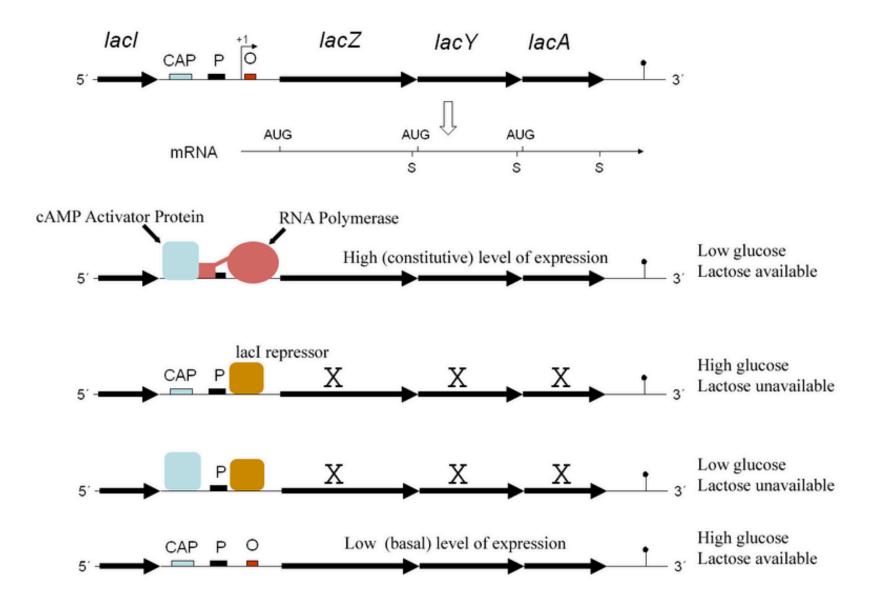
Below, focus on 1st step only: transcriptional regulation

E. coli growth on glucose + lactose



http://en.wikipedia.org/wiki/Lac_operon

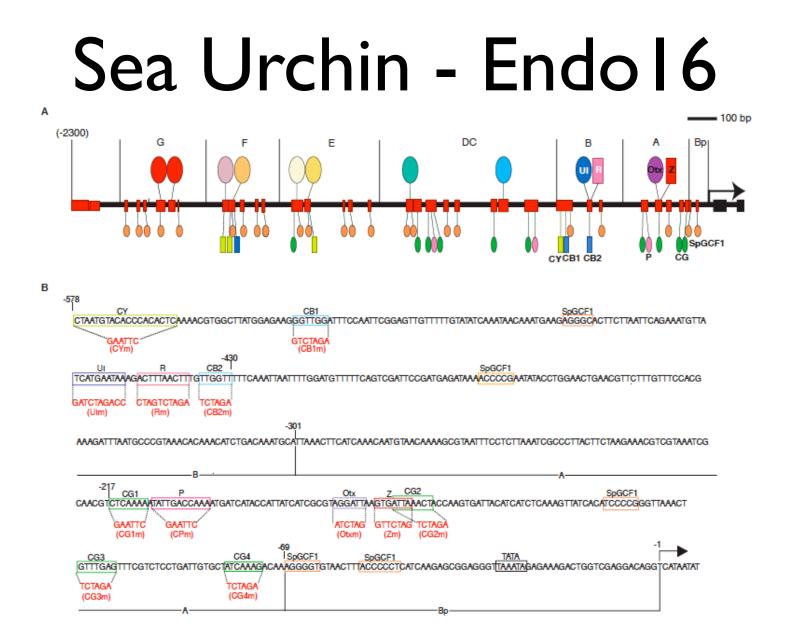
The lac Operon and its Control Elements

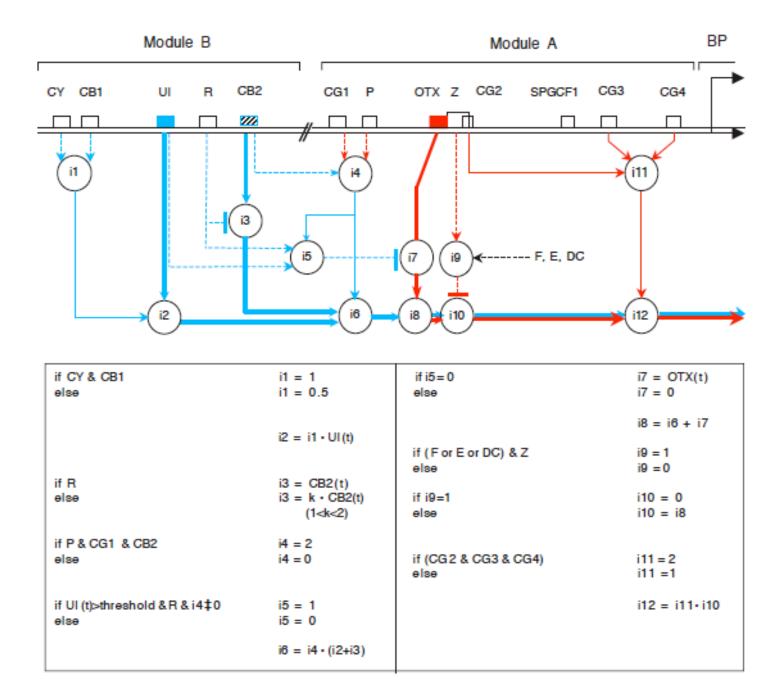


1965 Nobel Prize

Physiology or Medicine

François Jacob, Jacques Monod, André Lwoff

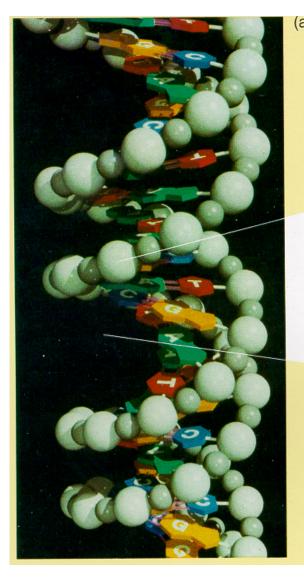


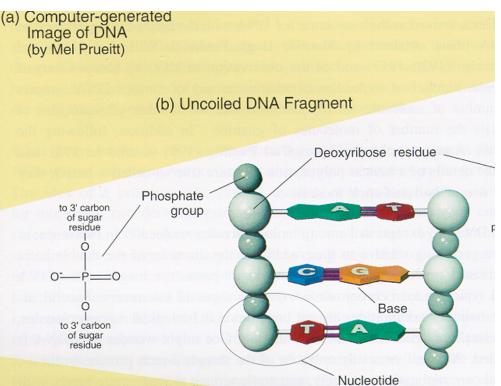


DNA Binding Proteins

A variety of DNA binding proteins (so-called "transcription factors"; a significant fraction, perhaps 5-10%, of all human proteins) modulate transcription of protein coding genes

The Double Helix





As shown, the two strands coil

about each other in a fashion such that all the bases project inward toward the helix axis. The two strands are held together by hydrogen bonds (pink rods) linking each base projecting from one backbone to its so-called complementary base projecting from the other backbone. The base A always bonds to T (A and T are comple-

Shown in (b)

is an uncoiled fragment of (a three complementary base pai chemist's viewpoint, each stra a polymer made up of four re called deoxyribonucleotides

Los Alamos Science

In the groove

Different patterns of potential H bonds at edges of different base pairs, accessible esp. in major groove

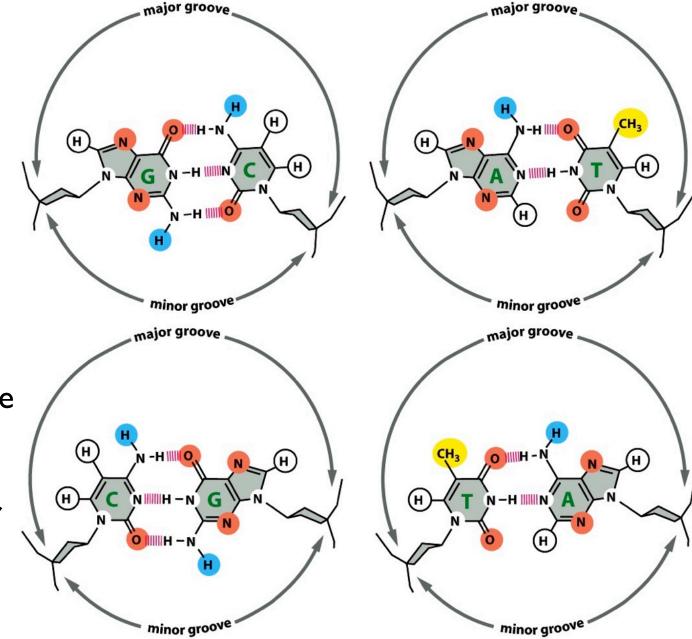


Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Helix-Turn-Helix DNA Binding Motif

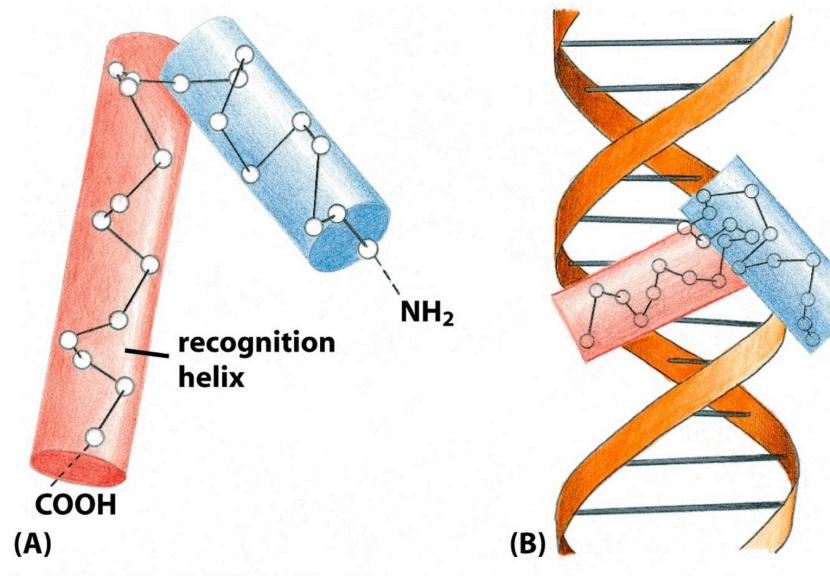


Figure 7-10 Molecular Biology of the Cell 5/e (© Garland Science 2008)

H-T-H Dimers

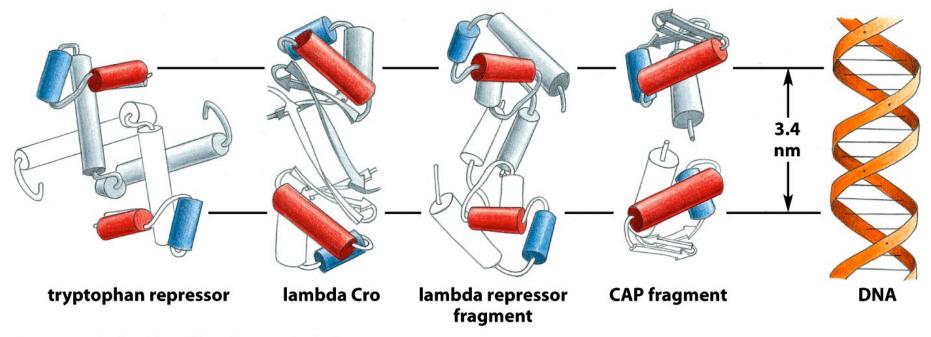


Figure 7-11 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Bind 2 DNA patches, ~ I turn apart Increases both specificity and affinity

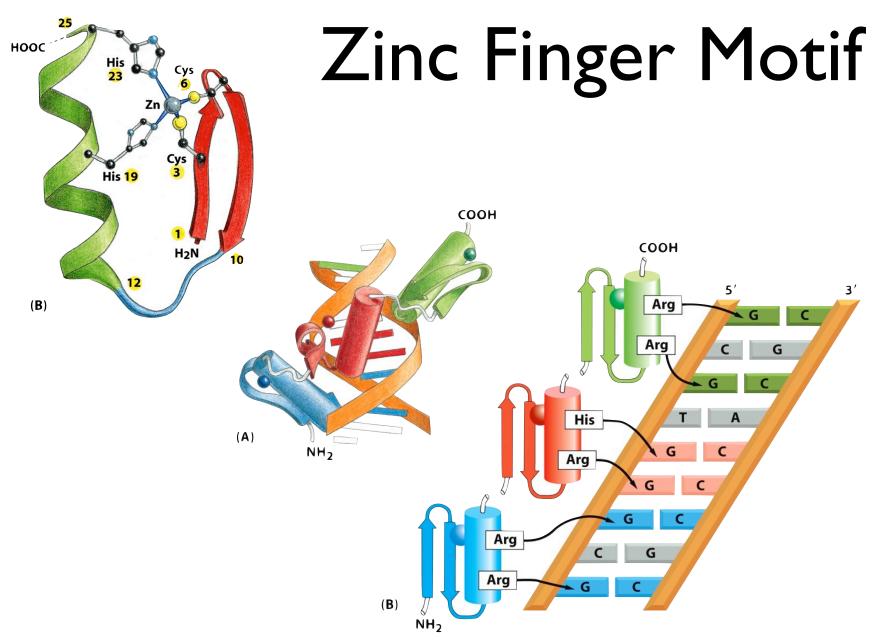


Figure 7.15 Molecular Biology of the Cell 5:e (© Garland Science 2008)

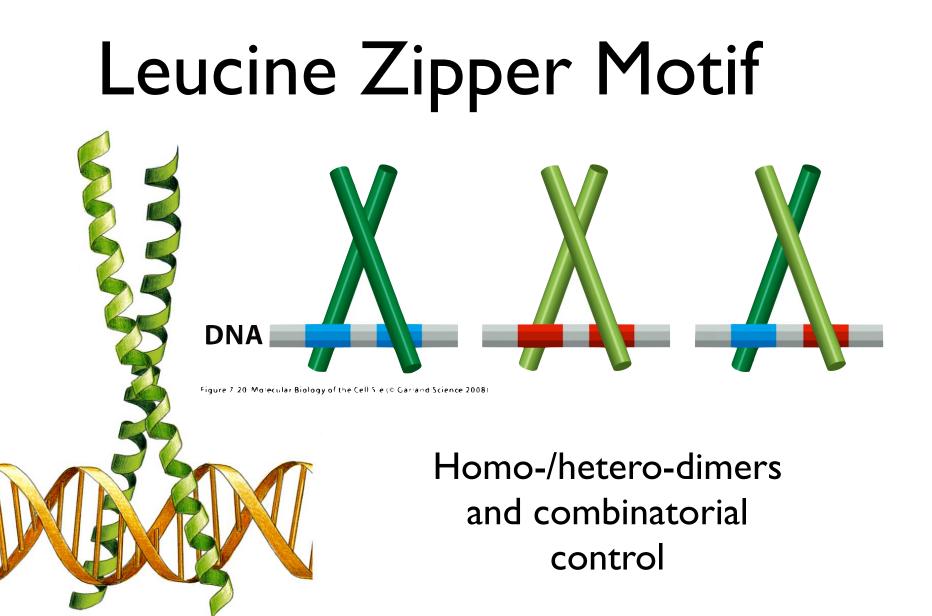
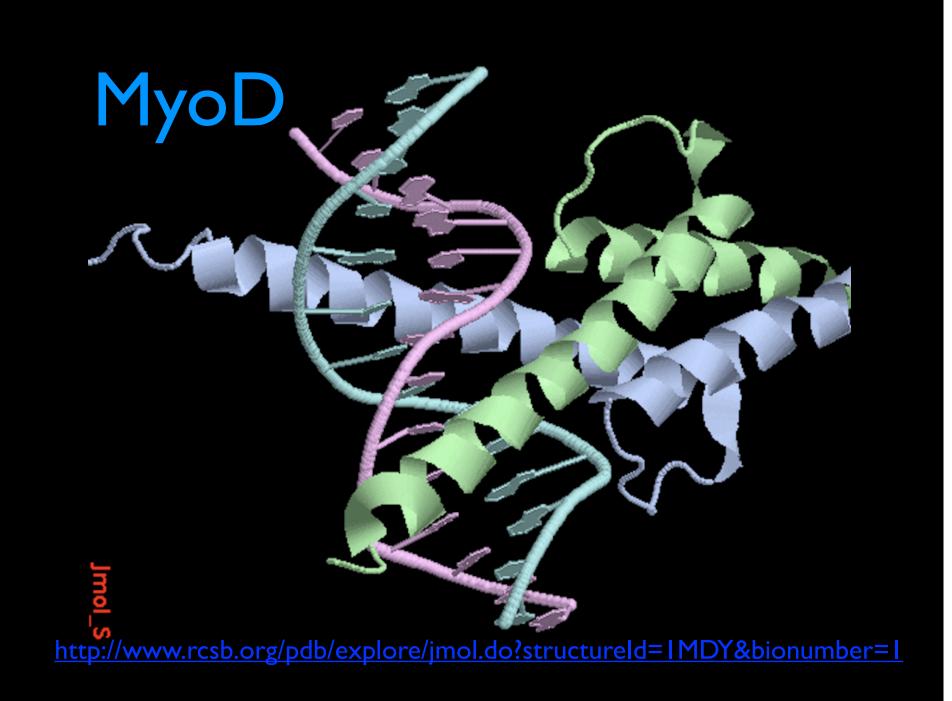


Figure 7-19 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Some Protein/DNA interactions well-understood

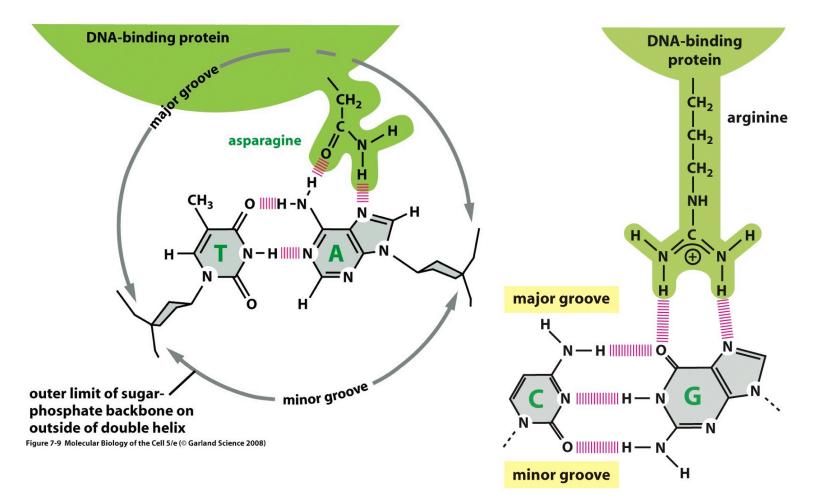


Figure 7-25 Molecular Biology of the Cell 5/e (© Garland Science 2008)

But the overall DNA binding "code" still defies prediction

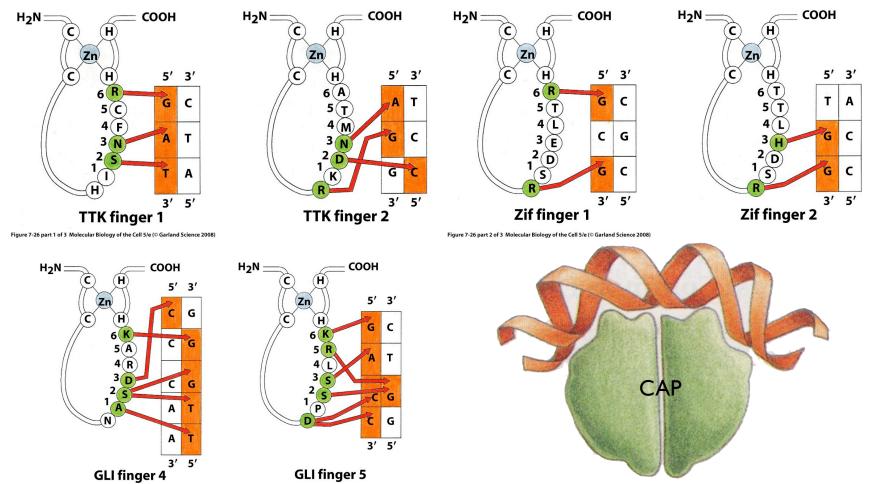


Figure 7-26 part 3 of 3 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Summary

Proteins can bind DNA to regulate gene expression (i.e., production of other proteins & themselves)

This is widespread

Complex combinatorial control is possible

Sequence Motifs

Motif: "a recurring salient thematic element" Last few slides described structural motifs in proteins

Equally interesting are the DNA sequence motifs to which these proteins bind - e.g., one leucine zipper dimer might bind (with varying affinities) to dozens or hundreds of similar sequences

DNA binding site summary

Complex "code"

Short patches (4-8 bp)

Often near each other (I turn = I0 bp)

Often reverse-complements

Not perfect matches

E. coli Promoters

"TATA Box" ~ 10bp upstream of transcription start How to define it? TACGAT ТААААТ Consensus is TATAAT TATACT BUT all differ from it GATAAT Allow k mismatches? TATGAT Equally weighted? TATGTT Wildcards like R,Y? ({A,G}, {C,T}, resp.)

E. coli Promoters

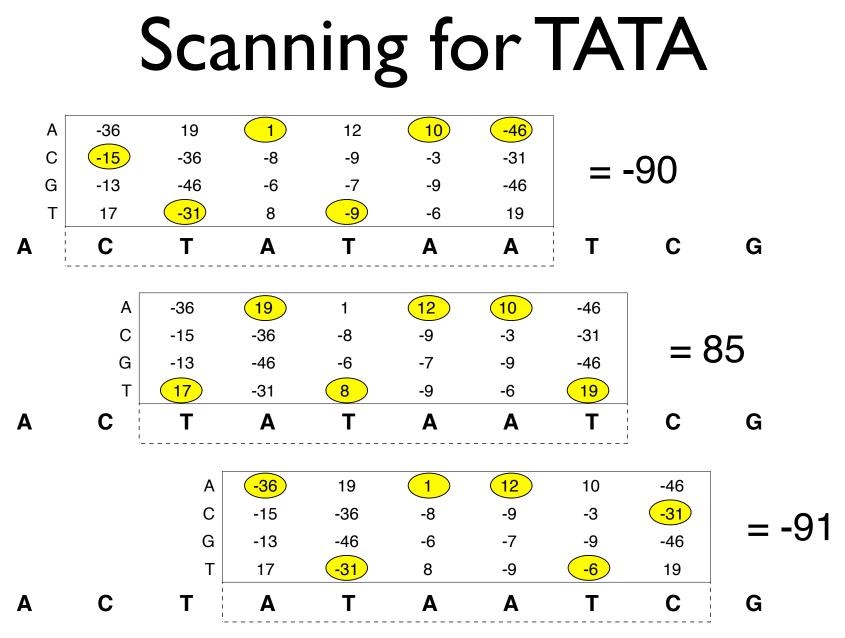
"TATA Box" - consensus TATAAT ~10bp upstream of transcription start Not exact: of 168 studied (mid 80's)
nearly all had 2/3 of TAxyzT
80-90% had all 3
50% agreed in each of x,y,z
no perfect match
Other common features at -35, etc.

TATA Box Frequencies

pos base	1	2	3	4	5	6
Α	2	95	26	59	51	1
С	9	2	14	13	20	3
G	10	1	16	15	13	0
Т	79	3	44	13	17	96

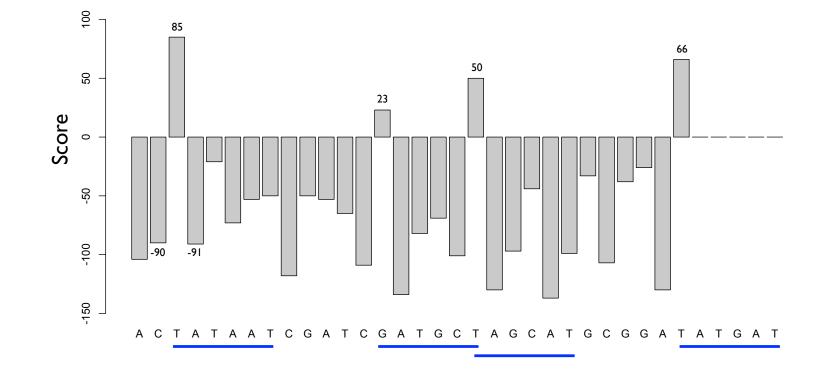
TATA Scores A "Weight Matrix Model" or "WMM"

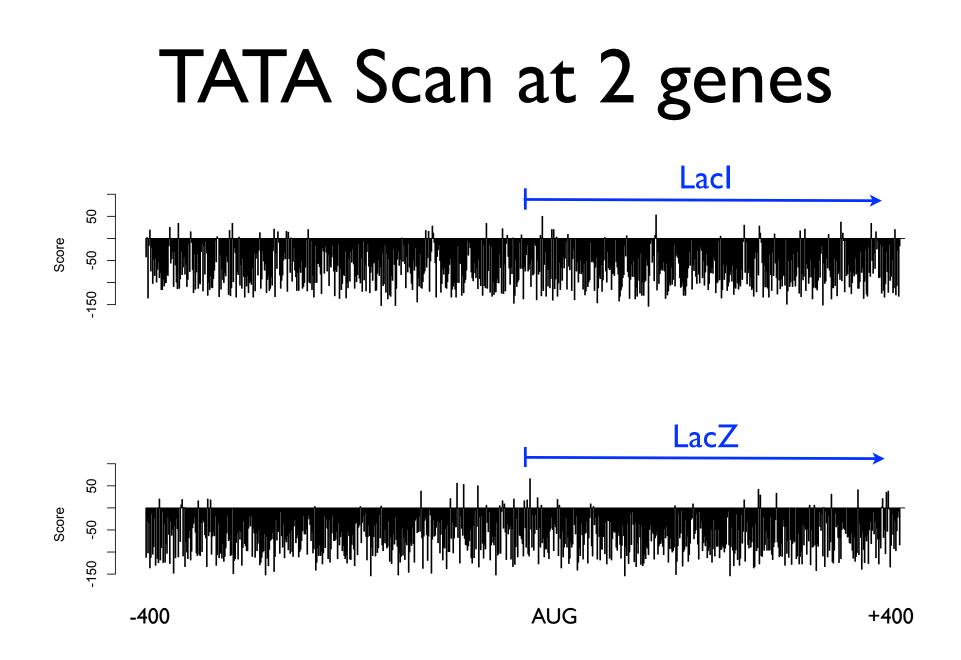
pos base	1	2	3	4	5	6
A	-36	19	1	12	10	-46
С	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46(?)
Т	17	-31	8	-9	-6	19



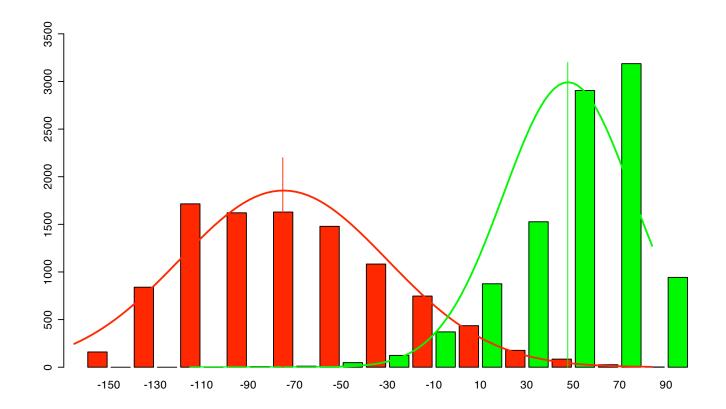
Stormo, Ann. Rev. Biophys. Biophys Chem, 17, 1988, 241-263

Scanning for TATA





Score Distribution (Simulated)



Weight Matrices: Statistics

Assume:

 $f_{b,i}$ = frequency of base b in position i in TATA

 f_b = frequency of base b in all sequences

Log likelihood ratio, given $S = B_1 B_2 \dots B_6$:

$$\log\left(\frac{P(S|\text{``tata''})}{P(S|\text{``non-tata''})}\right) = \log\frac{\prod_{i=1}^{6} f_{B_{i},i}}{\prod_{i=1}^{6} f_{B_{i}}} = \sum_{i=1}^{6} \log\frac{f_{B_{i},i}}{f_{B_{i}}}$$

Assumes independence

Neyman-Pearson

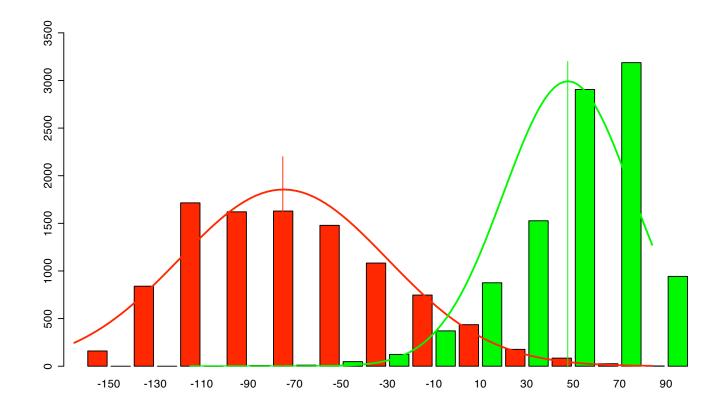
Given a sample $x_1, x_2, ..., x_n$, from a distribution $f(...|\Theta)$ with parameter Θ , want to test hypothesis $\Theta = \theta_1$ vs $\Theta = \theta_2$.

Might as well look at likelihood ratio:

$$\frac{f(x_{1}, x_{2}, ..., x_{n} | \theta_{1})}{f(x_{1}, x_{2}, ..., x_{n} | \theta_{2})} > \tau$$

(or log likelihood ratio)

Score Distribution (Simulated)



What's best WMM?

Given, say, 168 sequences $s_1, s_2, ..., s_k$ of length 6, assumed to be generated at random according to a WMM defined by 6 x (4-1) parameters θ , what's the best θ ?

E.g., what's MLE for θ given data $s_1, s_2, ..., s_k$?

Answer: like coin flips or dice rolls, count frequencies per position (see HW).

Weight Matrices: Chemistry

Experiments show ~80% correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus [Stormo & Fields]

Another WMM example

8 Sequences: ATG ATG ATG ATG ATG GTG GTG GTG TTG

Freq.	Col I	Col 2	Col 3
Α	0.625	0	0
C	0	0	0
G	0.250	0	
Т	0.125		0

LLR	Col I	Col 2	Col 3
Α	1.32	-8	-8
С	-∞	-8	-8
G	0	-∞	2.00
Т	-1.00	2.00	-∞

Log-Likelihood Ratio: $\log_2 \frac{f_{x_i,i}}{f_{x_i}}, \ f_{x_i} = \frac{1}{4}$

Non-uniform Background

- E. coli DNA approximately 25% A, C, G, T
- *M. jannaschi* 68% A-T, 32% G-C

LLR from previous example, assuming

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

LLR	Col I	Col 2	Col 3
Α	0.74	-∞	-∞
С	-∞	-8	-∞
G	1.00	-∞	3.00
Т	-1.58	1.42	-∞

e.g., G in col 3 is 8 x more likely via WMM than background, so (\log_2) score = 3 (bits).

Relative Entropy

AKA Kullback-Liebler Distance/Divergence, AKA Information Content

Given distributions P, Q

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \ge \mathbf{0}$$

Notes:

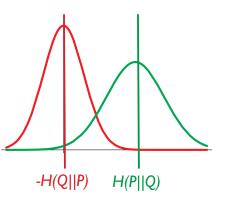
Let
$$P(x)\log \frac{P(x)}{Q(x)} = 0$$
 if $P(x) = 0$ [since $\lim_{y \to 0} y \log y = 0$]

Undefined if 0 = Q(x) < P(x)

WMM: How "Informative"? Mean score of site vs bkg?

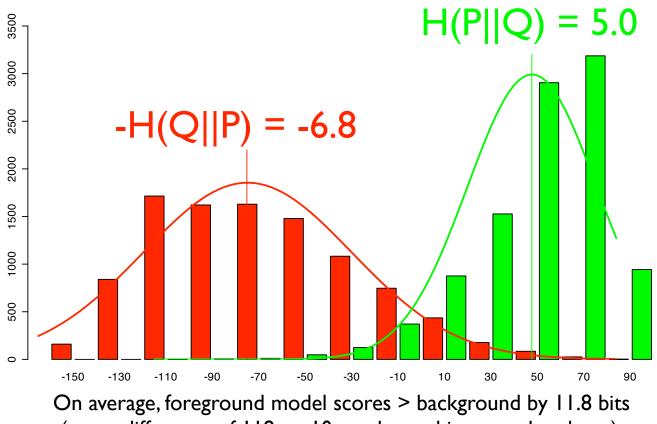
For any fixed length sequence x, let P(x) = Prob. of x according to WMM Q(x) = Prob. of x according to background Relative Entropy:

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$



H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM; -H(Q||P) is expected score of Background Expected score difference: H(P||Q) + H(Q||P)

WMM Scores vs **Relative Entropy**



(score difference of 118 on 10x scale used in examples above).

For a WMM:

$$H(P||Q) = \sum_{i} H(P_i||Q_i)$$

where P_i and Q_i are the WMM/background distributions for column i.

Proof: exercise

Hint: Use the assumption of independence between WMM columns

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
А	0.625	0	0
C	0	0	0
G	0.250	0	Ι
Т	0.125		0

Uniform

LLR	Col I	Col 2	Col 3								
Α	1.32	-∞	-∞								
С	-8	-8	-∞								
G	0	-∞	2.00								
Т	-1.00	2.00	-∞								
RelEnt	0.70	2.00	2.00	4.70							

Non-uniform

LLR	Col I	Col 2	Col 3	
А	0.74	-8	-8	
С	-8	-8	-8	
G	1.00	-∞	3.00	
Т	-1.58	I.42	-∞	
RelEnt	0.51	1.42	3.00	4.93

Pseudocounts

Are the $-\infty$'s a problem?

Certain that a given residue *never* occurs in a given position? Then $-\infty$ just right

Else, it may be a small-sample artifact

Typical fix: add a *pseudocount* to each observed count—small constant (e.g., .5, I)

Sounds *ad hoc*; there is a Bayesian justification

WMM Summary

Weight Matrix Model (aka Position Weight Matrix, PWM, Position Specific Scoring Matrix, PSSM, "possum", 0th order Markov model)

- Simple statistical model assuming independence between adjacent positions
- To build: count (+ pseudocount) letter frequency per position, log likelihood ratio to background To scan: add LLRs per position, compare to threshold Generalizations to higher order models (i.e., letter frequency per position, conditional on neighbor) also possible, with enough training data

How-to Questions

Given aligned motif instances, build model? Frequency counts (above, maybe w/ pseudocounts) Given a model, find (probable) instances

Scanning, as above

Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions of co-expressed genes)

Hard ... rest of lecture.

Motif Discovery

Unfortunately, finding a site of max relative entropy in a set of unaligned sequences is NPhard [Akutsu]

Motif Discovery: 4 example approaches

Brute Force

Greedy search

Expectation Maximization

Gibbs sampler

Brute Force

Input:

Motif length L, plus sequences s_1 , s_2 , ..., s_k (all of length n+L-1, say), each with one instance of an unknown motif

Algorithm:

Build all k-tuples of length L subsequences, one from each of $s_1, s_2, ..., s_k$ (n^k such tuples)

Compute relative entropy of each

Pick best

Brute Force, II

Input:

Motif length L, plus seqs s_1 , s_2 , ..., s_k (all of length n+L-1, say),

each with one instance of an unknown motif

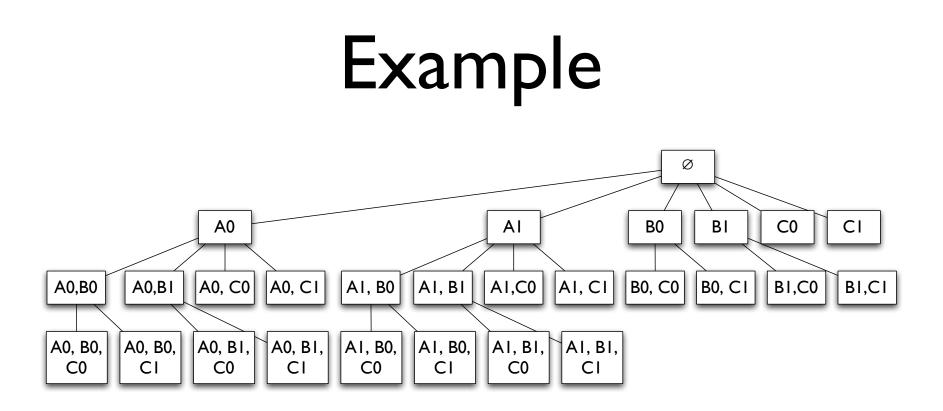
Algorithm in more detail:

Build singletons: each len L subseq of each s1, s2, ..., sk (nk sets)

Extend to pairs: len L subseqs of each pair of seqs $\binom{n^2\binom{k}{2}}{2}$ sets) Then triples: len L subseqs of each triple of seqs $\binom{n^3\binom{k}{3}}{3}$ sets) Repeat until all have k sequences $\binom{n^k\binom{k}{k}}{k}$ sets)

Compute relative entropy of each; pick best

problem: stronomically sloooow



Three sequences (A, B, C), each with two possible motif positions (0,1) Greedy Best-First [Hertz, Hartzell & Stormo, 1989, 1990]

Input:

Sequences $s_1, s_2, ..., s_k$; motif length L;

"breadth" d, say d = 1000

Algorithm:

As in brute, but discard all but best d relative entropies at each stage usual "greedy" problems

d=2

Expectation Maximization [MEME, Bailey & Elkan, 1995]

Input (as above):

Sequence $s_1, s_2, ..., s_k$; motif length *l*; background model; again assume one instance per sequence (variants possible)

Algorithm: EM

Visible data: the sequences

Hidden data: where's the motif

 $Y_{i,j} = \begin{cases} 1 & \text{if motif in sequence } i \text{ begins at position } j \\ 0 & \text{otherwise} \end{cases}$

Parameters θ : The WMM

MEME Outline

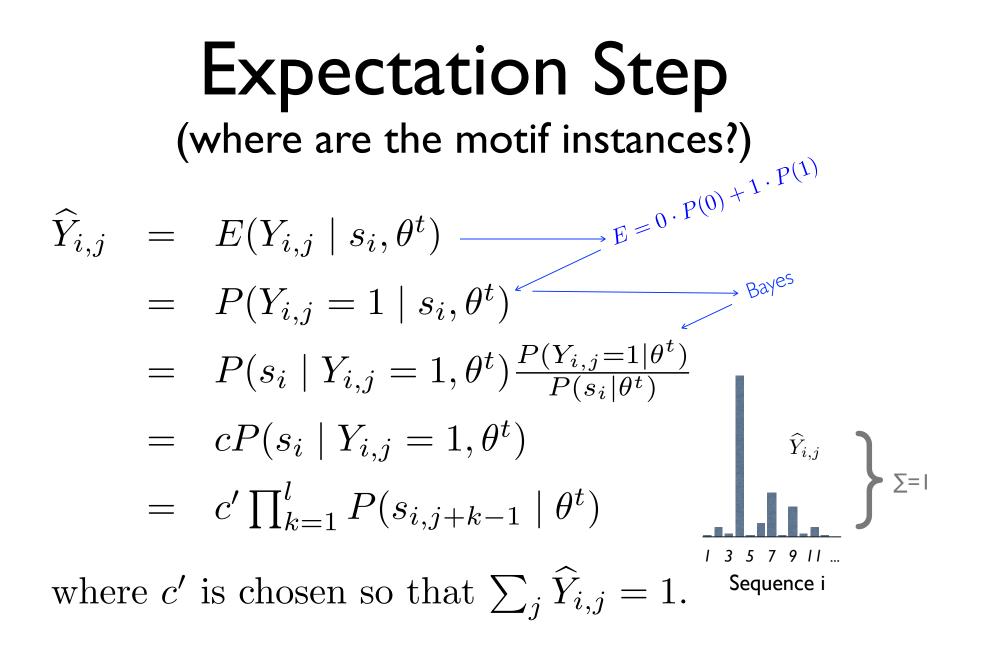
Typical EM algorithm:

Parameters θ^t at t^{th} iteration, used to estimate where the motif instances are (the hidden variables)

Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+l}

Repeat

Key: given a few good matches to best motif, expect to pick more



Maximization Step (what is the motif?)

Find θ maximizing expected value:

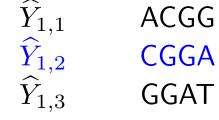
$$\begin{aligned} Q(\theta \mid \theta^{t}) &= E_{Y \sim \theta^{t}} [\log P(s, Y \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\log \prod_{i=1}^{k} P(s_{i}, Y_{i} \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \log P(s_{i}, Y_{i} \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} Y_{i,j} \log P(s_{i}, Y_{i,j} = 1 \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} Y_{i,j} \log (P(s_{i} \mid Y_{i,j} = 1, \theta) P(Y_{i,j} = 1 \mid \theta))] \\ &= \sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} E_{Y \sim \theta^{t}} [Y_{i,j}] \log P(s_{i} \mid Y_{i,j} = 1, \theta) + C \\ &= \sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} \widehat{Y}_{i,j} \log P(s_{i} \mid Y_{i,j} = 1, \theta) + C \end{aligned}$$

M-Step (cont.)

 $Q(\theta \mid \theta^{t}) = \sum_{i=1}^{k} \sum_{j=1}^{|s_{i}|-l+1} \widehat{Y}_{i,j} \log P(s_{i} \mid Y_{i,j} = 1, \theta) + C$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i,j}$, again the "obvious" thing.

 s_1 : ACGGATT... s_k : GC...TCGGAC



 $egin{array}{ccc} ec{Y}_{k,l-1} & \mathsf{CGGA} \ \widehat{Y}_{k,l} & \mathsf{GGAC} \end{array}$

Initialization

- 1. Try every motif-length substring, and use as initial θ a WMM with, say, 80% of weight on that sequence, rest uniform
- 2. Run a few iterations of each
- 3. Run best few to convergence

(Having a supercomputer helps):

http://meme.sdsc.edu/

Another Motif Discovery Approach The Gibbs Sampler

Lawrence, et al. "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Sequence Alignment," Science 1993

Sigma-37	223	IIDLTYIQNK	SQKETGDILGISQMHVSR	LQRKAVKKLR	240	A25944	
SpoIIIC	94	RFGLDLKKEK	TQREIAKELGISRSYVSR	IEKRALMKMF	111	A28627	
NahR	22	VVFNQLLVDR	RVSITAENLGLTQPAVSN	ALKRLRTSLQ	39	A32837	
Antennapedia	326	FHFNRYLTRR	RRIEIAHALCLTERQIKI	WFQNRRMKWK	343	A23450	
NtrC (Brady.)	449	LTAALAATRG	NQIRAADLLGLNRNTLRK	KIRDLDIQVY	466	B26499	
DicA	22	IRYRRKNLKH	TQRSLAKALKISHVSVSQ	WERGDSEPTG	39	B24328	(BVECDA)
MerD	5	MNAY	TVSRLALDAGVSVHIVRD	YLLRGLLRPV	22	C29010	
Fis	73	LDMVMQYTRG	NQTRAALMMGINRGTLRK	KLKKYGMN	90	A32142	(DNECFS)
MAT al	99	FRRKQSLNSK	EKEEVAKKCGITPLQVRV	WFINKRMRSK	116	A90983	(JEBY1)
Lambda cII	25	SALLNKIAML	GTEKTAEAVGVDKSQISR	WKRDWIPKFS	42	A03579	(QCBP2L)
Crp (CAP)	169	THPDGMQIKI	TRQEIGQIVGCSRETVGR	ILKMLEDQNL	186	A03553	(QRECC)
Lambda Cro	15	ITLKDYAMRF	GQTKTAKDLGVYQSAINK	AIHAGRKIFL	32	A03577	(RCBPL)
P22 Cro	12	YKKDVIDHFG	TQRAVAKALGISDAAVSQ	WKÉVIPEKDA	29	A25867	(RGBP22)
AraC	196	ISDHLADSNF	DIASVAQHVCLSPSRLSH	LFRQQLGISV	213	A03554	(RGECA)
Fnr	196	FSPREFRLTM	TRGDIGNYLGLTVETISR	LLGRFQKSGM	213	A03552	(RGECF)
HtpR	252	ARWLDEDNKS	TLQELADRYGVSAERVRQ	LEKNAMKKLR	269	A00700	(RGECH)
NtrC (K.a.)	444	LTTALRHTQG	HKQEAARLLGWGRNTLTR	KLKELGME	461	A03564	(RGKBCP)
CytR	11	MKAKKQETAA	TMKDVALKAKVSTATVSR	ALMNPDKVSQ	28	A24963	(RPECCT)
DeoR	23	LQELKRSDKL	HLKDAAALLGVSEMTIRR	DLNNHSAPVV	40	A24076	(RPECDO)
GalR	3	MA	TIKDVARLAGVSVATVSR	VINNSPKASE	20	A03559	(RPECG)
LacI	5	MKPV	TLYDVAEYAGVSYQTVSR	VVNQASHVSA	22	A03558	(RPECL)
TetR	26	LLNEVGIEGL	TTRKI AQKLGVEQPTLYW	HVKNKRALLD	43	A03576	(RPECTN)
TrpR	67		SQRELKNELGAGIATITR		84	A03568	(RPECW)
NifA	495	LIAALEKAGW	VQAKAARLLGMTPRQVAY	RIQIMDITMP	512	s02513	
SpoIIG	205	RFGLVGEEEK	TQKDVADMMGISQSYISR	LEKRIIKRLR	222	S07337	
, Pin	160	QAGRLIAAGT	PRQKVAIIYDVGVSTLYK	TFPAGDK	177	S07958	
PurR	- 3	MA	TIKDVAKRANVSTTTVSH	VINKTRFVAE	20	S08477	
EbgR	3	MA	TLKDIAIEAGVSLATVSR	VLNDDPTLNV	20	s09205	
LexA	27	DHISQTGMPP	TRAEIAORLGFRSPNAAE	EHLKALARKG	44	S11945	
P22 cI	25	SSILNRIAIR	GQRKVADALGINESQISR	WKGDFIPKMG	42	B25867	(Z1BPC2)
			* * * * * * * * * * * * * * * * * *	***			

В								Posit	ion i	n site								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Arg	94	222	265	137	9	9	137	137	9	9	9	52	222	94	94	9	265	606
Lys	9	133	442	380	9	71	380	194	9	133	9	9	71	9	9	9	71	256
Glu	53	9	96	401	9	9	140	140	9	9	9	53	140	140	9	9	9	53
Asp	67	9	9	473	9	9	299	125	9	67	9	67	67	9	9	9	9	67
Gln	9	600	224	9	9	9	224	9	9	9	9	9	278	63	278	9	9	170
His	240	9	´ 9	9	9	9	125	125	9	9	9	9	125	125	125	9	9	240
Asn	168	9	9	9	9	9	168	89	9	89	9	248	9	168	89	9	89	89
Ser	117	9	117	117	9	9	9	9	9	9	9	819	63	387	63	9	819	9
Gly	151	9	56	9	9	151	9	9	9	1141	9	151	9	56	9	9	56	9
Ala	.9	9	112	43	181	901	43	181	215	9	43	9	43	181	112	. 43	78	9
Thr	915	130	130	9	251	9	9	9	9	9	9	311	130	70	855	ີ 9	130	9
Pro	76	9	9	9	9	9	9	9	9	9	9	9	210	210	9	9	9	9
Cys	9	9	9	9	9	9	9	9	295	581	295	9	9	9	9	9	, 9	9
Val	58	107	9	9	500	9	9	9	156	9	598	9	205	58	9	746	9	58
Leu	9	121	9	9	149	9	93	149	458	9	149	9	37	37	9	177	9	9
Ile	9	166	114	61	323	9	114	166	9	9	427	9.	61	9	61	427	9	61
Met	9	104	9	9	9	9	9	198	198	9	104	9	9	198	9	9	9	9
Tyr	9	9	136	9	· 9	9	9	262	262	9	9	136	136	9	262	9	262	136
Phe	9	9	9	9	9	9	9	9	9	9	108	9	9	9	9	9	9	9
Trp	9	9	9	9	9	9	9	9	9	9	366	9	9	9	9	9	9	366

Some History

Geman & Geman, IEEE PAMI 1984

Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, "Equations of State Calculations by Fast Computing Machines," J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903, American physicist, a pioneer of thermodynamics

How to Average

An old problem: n random variables: Joint distribution (p.d.f.): Some function: <u>Want Expected Value:</u>

 x_1, x_2, \dots, x_k $P(x_1, x_2, \dots, x_k)$ $f(x_1, x_2, \dots, x_k)$ $E(f(x_1, x_2, \dots, x_k))$

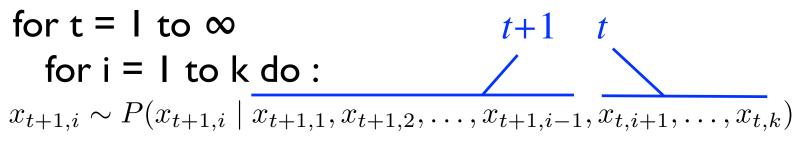
How to Average

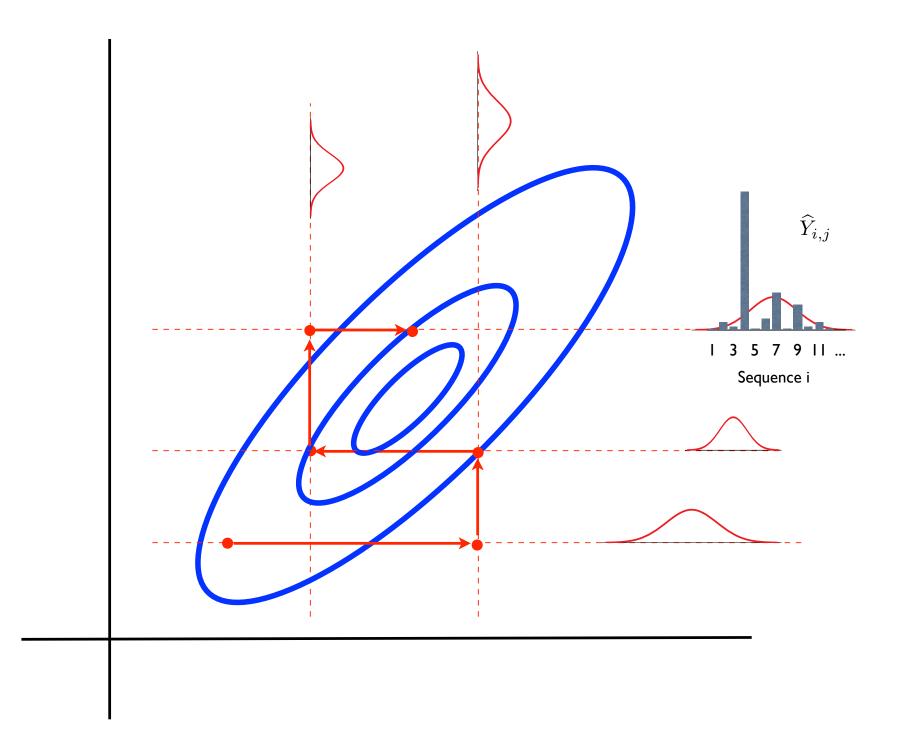
 $E(f(x_1, x_2, \dots, x_k)) = \int_{x_1} \int_{x_2} \dots \int_{x_k} f(x_1, x_2, \dots, x_k) \cdot P(x_1, x_2, \dots, x_k) dx_1 dx_2 \dots dx_k$

Approach I: direct integration (rarely solvable analytically, esp. in high dim) Approach 2: numerical integration (often difficult, e.g., unstable, esp. in high dim) Approach 3: Monte Carlo integration sample $\vec{x}^{(1)}, \vec{x}^{(2)}, \dots \vec{x}^{(n)} \sim P(\vec{x})$ and average: $E(f(\vec{x})) \approx \frac{1}{n} \sum_{i=1}^{n} f(\vec{x}^{(i)})$

Markov Chain Monte Carlo (MCMC)

- Independent sampling also often hard, but not required for expectation
- MCMC $ec{X}_{t+1} \sim P(ec{X}_{t+1} \mid ec{X}_t) \,$ w/ stationary dist = P
- Simplest & most common: Gibbs Sampling $P(x_i \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$
- Algorithm





Input: again assume sequences $s_1, s_2, ..., s_k$ with one length w motif per sequence **Motif model:** WMM

Parameters: Where are the motifs? for $1 \le i \le k$, have $1 \le x_i \le |s_i| - w + 1$

"Full conditional": to calc

 $P(x_i = j \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ build WMM from motifs in all sequences except *i*, then calc prob that motif in *i*th seq occurs at *j* by usual "scanning" alg.

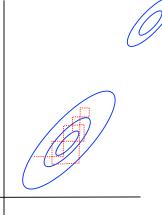
Overall Gibbs Alg Randomly initialize x_i 's for t = | to ∞ for i = 1 to k discard motif instance from s_i; recalc WMM from rest for $j = 1 ... |s_i| - w + 1$ Similar to MEME, but it calculate prob that i^{th} motif is at j: would average over, $P(x_i = j \mid x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_k)$ rather than pick new x_i according to that distribution sample from

Issues

Burnin - how long must we run the chain to reach stationarity?

Mixing - how long a post-burnin sample must we take to get a good sample of the stationary distribution? In particular:

Samples are not independent; may not "move" freely through the sample space Many isolated modes

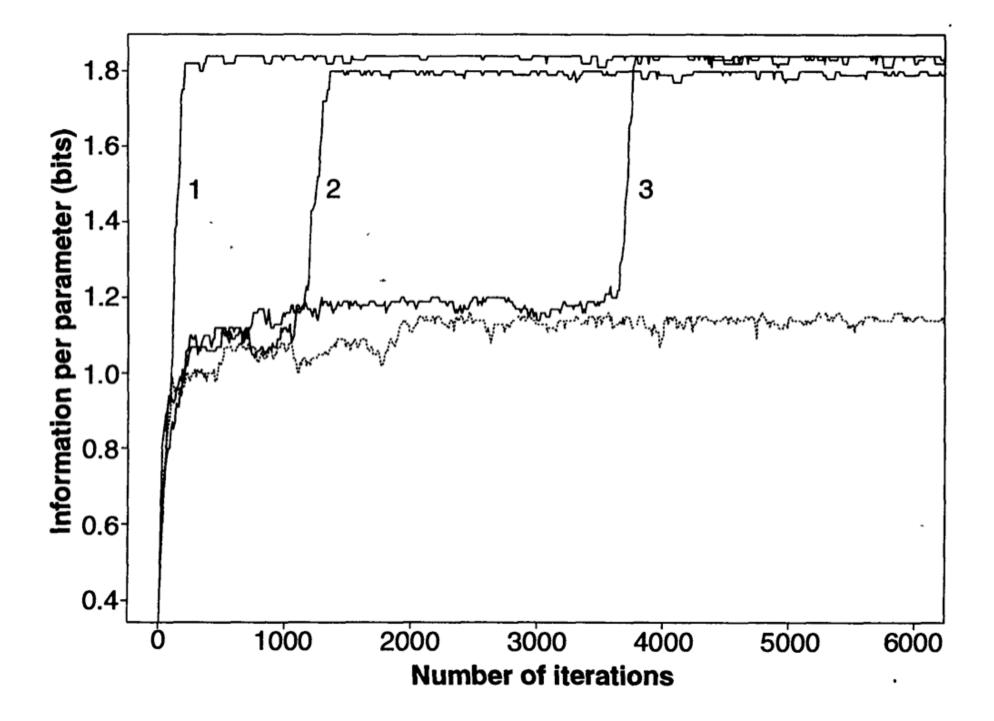


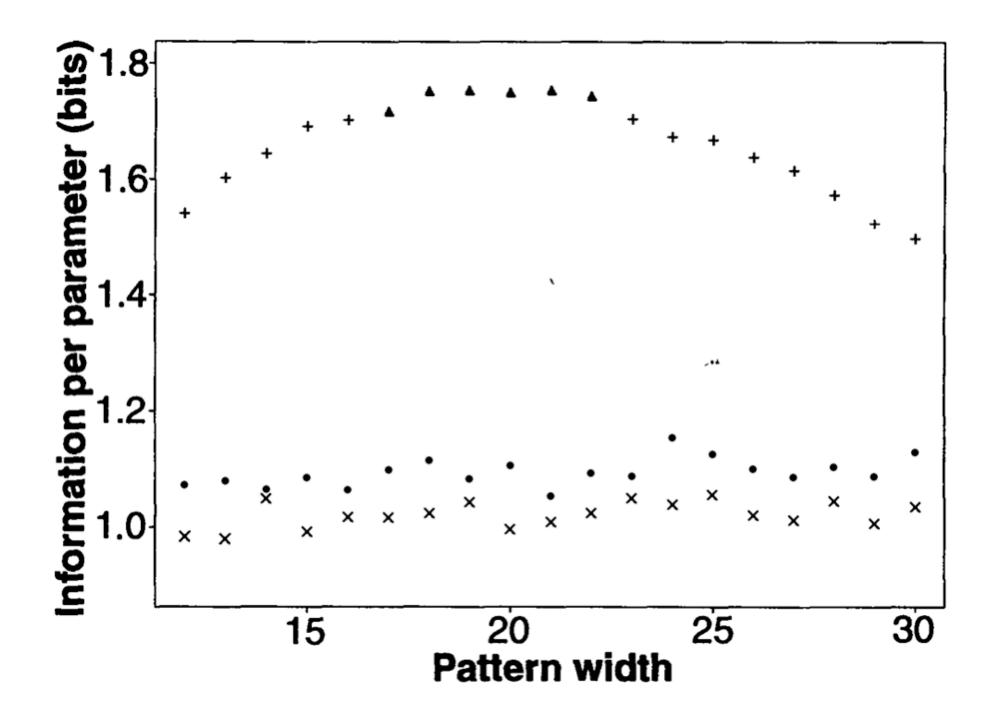
Variants & Extensions

"Phase Shift" - may settle on suboptimal solution that overlaps part of motif. Periodically try moving all motif instances a few spaces left or right.

Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position

Multiple patterns per string





NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 1 JANUARY 2005

Assessing computational tools for the discovery of transcription factor binding sites

Martin Tompa^{1,2}, Nan Li¹, Timothy L Bailey³, George M Church⁴, Bart De Moor⁵, Eleazar Eskin⁶, Alexander V Favorov^{7,8}, Martin C Frith⁹, Yutao Fu⁹, W James Kent¹⁰, Vsevolod J Makeev^{7,8}, Andrei A Mironov^{7,11}, William Stafford Noble^{1,2}, Giulio Pavesi¹², Graziano Pesole¹³, Mireille Régnier¹⁴, Nicolas Simonis¹⁵, Saurabh Sinha¹⁶, Gert Thijs⁵, Jacques van Helden¹⁵, Mathias Vandenbogaert¹⁴, Zhiping Weng⁹, Christopher Workman¹⁷, Chun Ye¹⁸ & Zhou Zhu⁴

Methodology

13 tools

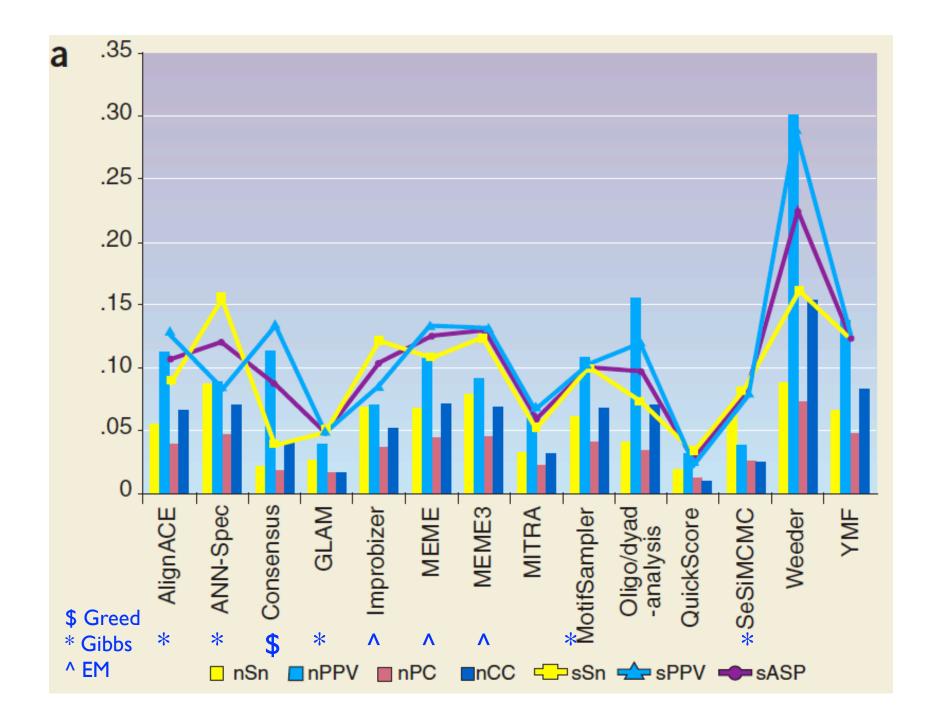
Real 'motifs' (Transfac)

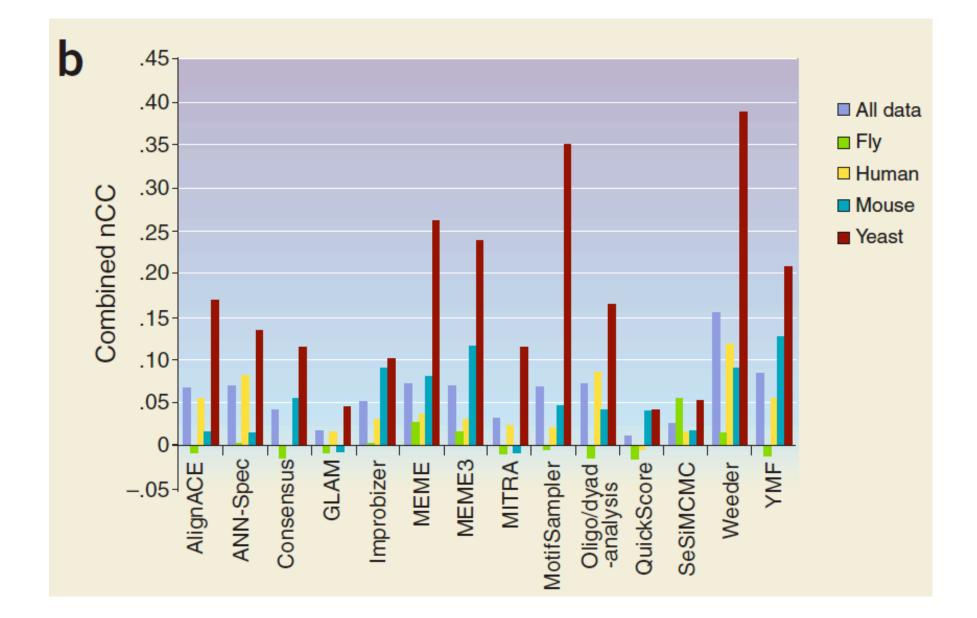
56 data sets (human, mouse, fly, yeast)

'Real', 'generic', 'Markov'

Expert users, top prediction only

"Blind" – sort of





Lessons

Evaluation is hard (esp. when "truth" is unknown) Accuracy low

partly reflects limitations in evaluation methodology (e.g. \leq 1 prediction per data set; results better in synth data)

partly reflects difficult task, limited knowledge (e.g. yeast > others)

No clear winner re methods or models

Motif Discovery Summary

Important problem: a key to understanding gene regulation

Hard problem: short, degenerate signals amidst much noise

Many variants have been tried, for representation, search, and discovery. We looked at only a few:

Weight matrix models for representation & search

Greedy, MEME and Gibbs for discovery

Still much room for improvement. *Comparative genomics*, i.e. cross-species comparison is very promising