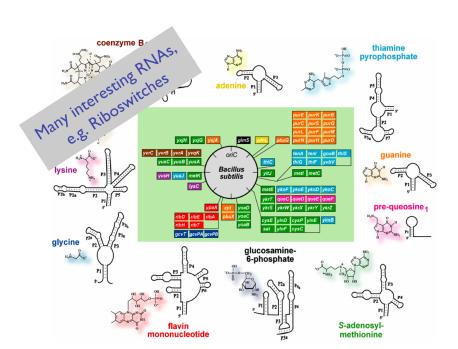
RNA Search and Motif Discovery

CSE 527 Computational Biology



Day I

Last lecture: many biologically interesting roles for RNA

Today:

Covariance Models (CMs) represent conserved RNA sequence/structure motifs

2

Computational Problems

How to predict secondary structure
How to model an RNA "motif"
 (I.e., sequence/structure pattern)
Given a motif, how to search for instances
Given (unaligned) sequences, find motifs
How to score discovered motifs
How to leverage prior knowledge

Motif Description

RNA Motif Models

"Covariance Models" (Eddy & Durbin 1994) aka profile stochastic context-free grammars aka hidden Markov models on steroids

Model position-specific nucleotide preferences and base-pair preferences

Pro: accurate

Con: model building hard, search sloooow

10

What

A probabilistic model for RNA families

The "Covariance Model"

≈ A Stochastic Context-Free Grammar

A generalization of a profile HMM

Algorithms for Training

From aligned or unaligned sequences Automates "comparative analysis"

Complements Nusinov/Zucker RNA folding

Algorithms for searching

Main Results

Very accurate search for tRNA

(Precursor to tRNAscanSE - current favorite)

Given sufficient data, model construction comparable to, but not quite as good as, human experts

Some quantitative info on importance of pseudoknots and other tertiary features

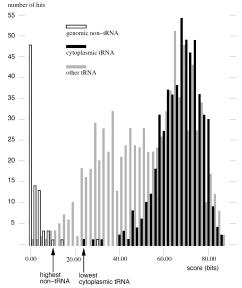
Probabilistic Model Search

As with HMMs, given a sequence, you calculate likelihood ratio that the model could generate the sequence, vs a background model

You set a score threshold Anything above threshold → a "hit" Scoring:

"Forward" / "Inside" algorithm - sum over all paths Viterbi approximation - find single best path (Bonus: alignment & structure prediction)

Example: searching for **tRNAs**



13

16

How to model an RNA "Motif"?

Conceptually, start with a profile HMM:

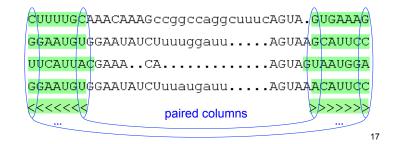
from a multiple alignment, estimate nucleotide/ insert/delete preferences for each position

given a new seq, estimate likelihood that it could be generated by the model, & align it to the model

AACAAAGccggccaggcuuudAGUF GAAUAUCUuuuqqauu../...AGUF GAAA..CA. GAAVAUCUuuaugauu... mostly G del ins all G

How to model an RNA "Motif"?

Add "column pairs" and pair emission probabilities for base-paired regions



Profile Hmm Structure

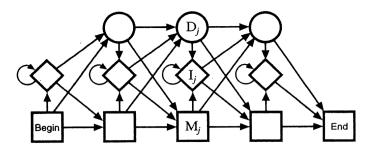


Figure 5.2 The transition structure of a profile HMM.

M_j: Match states (20 emission probabilities)

lj: Insert states (Background emission probabilities)

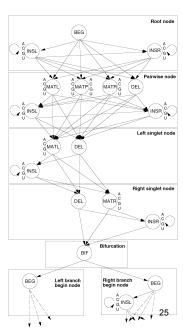
Di: Delete states (silent - no emission)

Overall CM Architecture

One box ("node") per node of guide tree

BEG/MATL/INS/DEL just like an HMM

MATP & BIF are the key additions: MATP emits *pairs* of symbols, modeling basepairs; BIF allows multiple helices



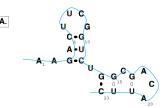
CM Structure

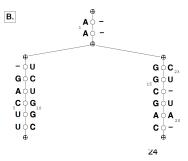
A: Sequence + structure

B: the CM "guide tree"

C: probabilities of letters/ pairs & of indels

Think of each branch being an HMM emitting both sides of a helix (but 3' side emitted in reverse order)





CM Viterbi Alignment

(the "inside" algorithm)

 $x_i = i^{th}$ letter of input

 x_{ij} = substring i,...,j of input

 $T_{yz} = P(\text{transition } y \rightarrow z)$

 $E_{x_i,x_j}^y = P(\text{emission of } x_i, x_j \text{ from state } y)$

 $S_{ij}^{y} = \max_{\pi} \log P(x_{ij} \text{ gen'd starting in state } y \text{ via path } \pi)$

CM Viterbi Alignment

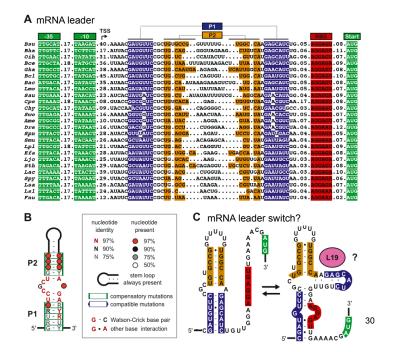
(the "inside" algorithm)

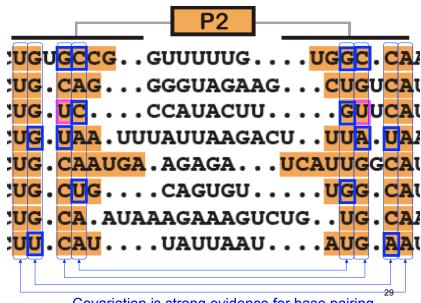
 $S_{ii}^{y} = \max_{\pi} \log P(x_{ii} \text{ generated starting in state } y \text{ via path } \pi)$

$$S_{ij}^{y} = \begin{cases} \max_{z} [S_{i+1,j-1}^{z} + \log T_{yz} + \log E_{x_{i},x_{j}}^{y}] & \text{match pair} \\ \max_{z} [S_{i+1,j}^{z} + \log T_{yz} + \log E_{x_{i}}^{y}] & \text{match/insert left} \\ \max_{z} [S_{i,j-1}^{z} + \log T_{yz} + \log E_{x_{j}}^{y}] & \text{match/insert right} \\ \max_{z} [S_{i,j}^{z} + \log T_{yz}] & \text{delete} \\ \max_{i < k \le j} [S_{i,k}^{y_{left}} + S_{k+1,j}^{y_{right}}] & \text{bifurcation} \end{cases}$$

Time O(qn³), q states, seq len n compare: O(qn) for profile HMM

27



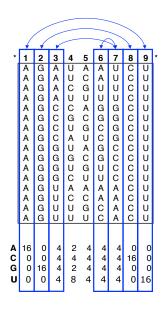


Covariation is strong evidence for base pairing

Mutual Information

$$M_{ij} = \sum_{xi,xj} f_{xi,xj} \log_2 \frac{f_{xi,xj}}{f_{xi}f_{xj}}; \quad 0 \le M_{ij} \le 2$$

Max when *no* seq conservation but perfect pairing MI = expected score gain from using a pair state Finding optimal MI, (i.e. opt pairing of cols) is hard(?) Finding optimal MI *without pseudoknots* can be done by dynamic programming



M.I. Example (Artificial)

MI:	1	2	3	4	5	6	7	8	9
9	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0		
7	0	0	2	0.30	0	1			
6	0	0	1	0.55	1				
5	0	0	0	0.42					
4	0	0	0.30						
3	0	0							
2	0								
1									

Cols 1 & 9, 2 & 8: perfect conservation & might be base-paired, but unclear whether they are. M.I. = 0

Cols 3 & 7: No conservation, but always W-C pairs, so seems likely they do base-pair. M.I. = 2 bits.

Cols 7->6: unconserved, but each letter in 7 has only 2 possible mates in 6. M.I. = 1 bit.

32

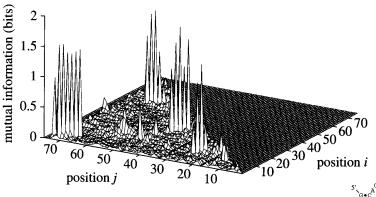
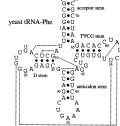


Figure 10.6 A mutual information plot of a tRNA alignment (top) shows four strong diagonals of covarying positions, corresponding to the four stems of the tRNA cloverleaf structure (bottom; the secondary structure of yeast phenylalanine tRNA is shown). Dashed lines indicate some of the additional tertiary contacts observed in the yeast tRNA-Phe crystal structure. Some of these tertiary contacts produce correlated pairs which can be seen weakly in the mutual information plot.



MI-Based Structure-Learning

Find best (max total MI) subset of column pairs among i...j, subject to absence of pseudo-knots

$$S_{i,j} = \max \begin{cases} S_{i,j-1} & \text{j unpaired} \\ \max_{i \leq k < j-4} S_{i,k-1} + M_{k,j} + S_{k+1,j-1} & \text{j paired} \end{cases}$$

"Just like Nussinov/Zucker folding"

BUT, need enough data---enough sequences at right phylogenetic distance

Primary vs Secondary Info

				_		*
	Avg.	Min	Max	ClustalV	1° info	2° info
Dataset	id	id	id	accuracy	(bits)	(bits)
TEST	.402	.144	1.00	64%	43.7	30.0-32.3
SIM100	.396	.131	.986	54%	39.7	30.5 - 32.7
SIM65	.362	.111	.685	37%	31.8	28.6-30.7

disallowing allowing pseudoknots

$$\left(\sum_{i=1}^{n} \max_{j} M_{i,j}\right) / 2$$

Comparison to TRNASCAN

Fichant & Burks - best heuristic then

97.5% true positive

0.37 false positives per MB

CM A1415 (trained on trusted alignment)

> 99.98% true positives

< 0.2 false positives per MB

Current method-of-choice is "tRNAscanSE", a CM-based scan with heuristic pre-filtering (including TRNASCAN?) for performance reasons.

40

Slightly different evaluation criteria

An Important Application: Rfam

tRNAScanSE

Uses 3 older heuristic tRNA finders as prefilter

Uses CM built as described for final scoring

Actually 3(?) different CMs

eukaryotic nuclear

prokaryotic

organellar

Used in all genome annotation projects

Rfam - an RNA family DB

Griffiths-Jones, et al., NAR '03, '05, '08

Biggest scientific computing user in Europe - 1000 cpu cluster for a month per release

Rapidly growing:

Rel 1.0, 1/03: 25 families, 55k instances

Rel 7.0, 3/05: 503 families, >300k instances

Rel 9.0, 7/08: 603 families, 896k instances

Rel 9.1, 1/09: 1372 families, ??? instances

Rfam database

http://www.sanger.ac.uk/Software/Rfam/ (Release 7.0, 3/2005)

503 ncRNA families

280,000 annotated ncRNAs

8 riboswitches, 235 small nucleolar RNAs, 8 spliceosomal RNAs, 10 bacterial antisense RNAs, 46 microRNAs, 9 ribozymes, 122 *cis* RNA regulatory elements, ...

44

Rfam – key issues

Overly narrow families

Variant structures/unstructured RNAs

Spliced RNAs

RNA pseudogenes

Human ALU is SRP related w/ 1.1m copies

Mouse B2 repeat (350k copies) tRNA related

Speed & sensitivity

Motif discovery

Example Rfam Family

Input (hand-curated):

MSA "seed alignment"

SS cons

Score Thresh T

Window Len W

Output:

CM

scan results & "full alignment"

IRE (partial seed alignment):

Hom.sap.	GUUCCUUCAACAGUGUUUGGAUGGAAC
Hom.sap.	UUUCUUC. UUCAACAGUGUUUGGAUGGAAC
Hom.sap.	UUUCCUGUUUCAACAGUGCUUGGA . GGAAC
Hom.sap.	UUUAUCAGUGACAGAGUUCACU.AUAAA
Hom.sap.	UCUCUUGCUUCAACAGUGUUUGGAUGGAAC
Hom.sap.	AUUAUCGGGAACAGUGUUUCCC.AUAAU
Hom.sap.	UCUUGCUUCAACAGUGUUUGGACGGAAG
Hom.sap.	UGUAUCGGAGACAGUGAUCUCC.AUAUG
Hom.sap.	AUUAUCGGAAGCAGUGCCUUCC.AUAAU
Cav.por.	UCUCCUGCUUCAACAGUGCUUGGACGGAGC
Mus.mus.	UAUAUCGGAGACAGUGAUCUCC.AUAUG
Mus.mus.	UUUCCUGCUUCAACAGUGCUUGAACGGAAC
Mus.mus.	GUACUUGCUUCAACAGUGUUUGAACGGAAC
Rat.nor.	UAUAUCGGAGACAGUGACCUCC.AUAUG
Rat.nor.	UAUCUUGCUUCAACAGUGUUUGGACGGAAC
SS cons	<<<<>>>>>.> <mark>>/2/2</mark>

Day 2 5 slide synopsis of last lecture

Covariance Models (CMs) represent conserved RNA sequence/structure motifs

They allow accurate search

But

- a) search is slow
- b) model construction is laborious

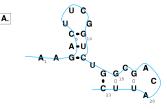
CM Structure

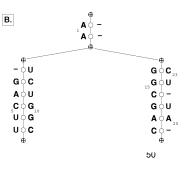
Juence + structure

ن: the CM "guide tree"

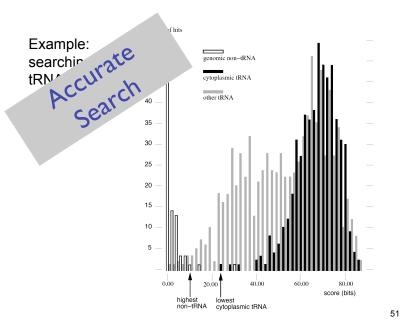
C: probabilities of letters/ pairs & of indels

Think of each branch being an HMM emitting both sides of a helix (but 3' side emitted in reverse order)





52



Hand-made am Family

(nand-curated):

MSA "seed alignment"

SS cons

But Slow cerbi Alignment (ane "inside" algorithm)

 $x_{\pi} \log P(x_{ii} \text{ generated starting in state } y \text{ via path } \pi)$

	,		
	$\max_{z} [S_{i+1,j-1}^{z}]$	$+\log T_{yz} + \log E_{x_i,x_j}^y]$	match pair
	$\max_{z} [S_{i+1,j}^{z}]$	$+\log T_{yz} + \log E_{x_i}^{y}$	match/insert left
$S_{ij}^y = \langle$	$\max_{z}[S_{i,j-1}^{z}]$	$+\log T_{yz} + \log E_{x_j}^{y}]$	match/insert right
	$\max_{z}[S_{i,j}^{z}]$	$ + \log T_{yz} + \log E_{x_{i},x_{j}}^{y}] $ $ + \log T_{yz} + \log E_{x_{i}}^{y}] $ $ + \log T_{yz} + \log E_{x_{j}}^{y}] $ $ + \log T_{yz}] $ $ + \log T_{yz}] $ $ + f + S_{k+1,j}^{yright}] $	delete
	$\max_{i < k \le j} [S_{i,k}^{y_k}]$	$\left[S_{k+1,j}^{y_{right}}\right]$	bifurcation
	4		

■ Time O(qn³), q states, seq len n

compare: O(qn) for profile HMM

Output: CM scan results & "full alignment"

Score Thresh T

Window Len W

IRE (partial seed alignment):

GUUCCUGCUUCAACAGUGUUUGGAU<mark>GGAAC</mark> Hom.sap. UUUCUUC. UUCAACAGUGUUUGGAUGGAAC UUUCCUGUUUCAACAGUGCUUGGA . GGAAC UUUAUC..AGUGACAGAGUUCACU.AUAAA Hom.sap. UCUCUUGCUUCAACAGUGUUUGGAUGGAAC AUUAUC...GGGAACAGUGUUUCCC.AUAAU AUUAUC..GGAAGCAGUGCCUUCC.AUAAU UCUCCUGCUUCAACAGUGCUUGGACGGAGC **UUUCC**UGCUUCAACAGUGCUUGAACGGAAC Mus.mus. GUACUUGCUUCAACAGUGUUUGAACGGAAC UAUAUC...GGAGACAGUGACCUCC.AUAUG Rat nor UAUCUUGCUUCAACAGUGUUUGGACGGAAC Rat.nor. <<<<....>>>>> .>>>> SS cons

Today's Goals

Faster Search
Infernal & RaveNnA
Automated Model-building
CMfinder

Faster Search

54

Homology search

Sequence-based

Smith-Waterman

FASTA

BLAST

Sharp decline in sensitivity at ~60-70% identity

So, use structure, too

Impact of RNA homology search

glycine riboswitch operon

B. subtilis

L. innocua

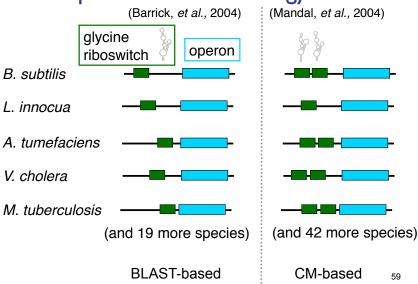
A. tumefaciens

V. cholera

M. tuberculosis

(and 19 more species)

Impact of RNA homology search



Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy

Zasha Weinberg

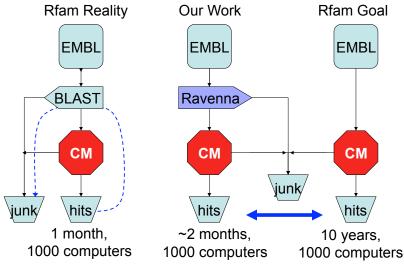
& W.L. Ruzzo

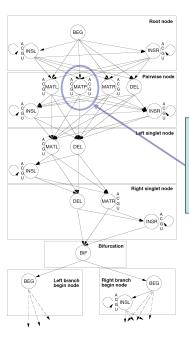
Recomb '04, ISMB '04, Bioinfo '06

RaveNnA: Genome Scale RNA Search

Typically 100x speedup over raw CM, w/ no loss in accuracy:
Drop structure from CM to create a (faster) HMM
Use that to pre-filter sequence;
Discard parts where, provably, CM score < threshold;
Actually run CM on the rest (the promising parts)
Assignment of HMM transition/emission scores is key
(a large convex optimization problem)

CM's are good, but slow





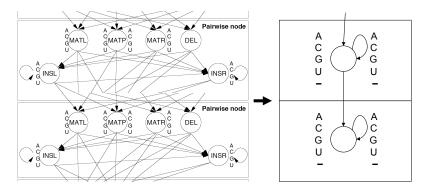
Covariance Model

Key difference of CM vs HMM: Pair states emit paired symbols, corresponding to base-paired nucleotides; 16 emission probabilities here.

65

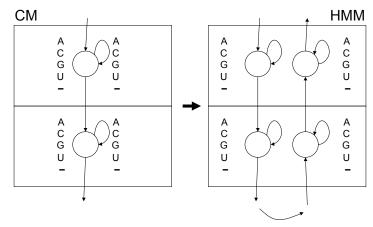
Oversimplified CM

(for pedagogical purposes only)



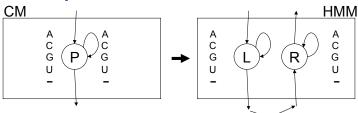
66

CM to HMM



25 emissions per state 5 emissions per state, 2x states

Key Issue: 25 scores → 10



Need: log Viterbi scores $CM \leq HMM$

Viterbi/Forward Scoring

Path π defines transitions/emissions

Score(π) = product of "probabilities" on π

NB: ok if "probs" aren't, e.g. $\Sigma \neq I$ (e.g. in CM, emissions are odds ratios vs Oth-order background)

For any nucleotide sequence x:

Viterbi-score(x) = max{ score(π) | π emits x}

Forward-score(x) = Σ { score(π) | π emits x}

69

Rigorous Filtering

 $P_{AA} \le L_A + R_A$ $P_{AC} \le L_A + R_C$ $P_{AG} \le L_A + R_G$ $P_{AU} \le L_A + R_U$ $P_{A-} \leq L_A + R_-$

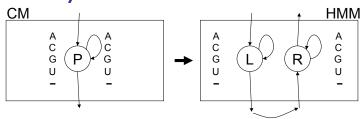
Any scores satisfying the linear inequalities give rigorous filtering

Proof:

CM Viterbi path score

- ≤ "corresponding" HMM path score
- ≤ Viterbi HMM path score (even if it does not correspond to any CM path)

Key Issue: 25 scores \rightarrow 10



Need: log Viterbi scores CM ≤ HMM

ed: log Viterbi scores
$$CM \le HMM$$

$$P_{AA} \le L_A + R_A \qquad P_{CA} \le L_C + R_A \qquad \dots$$

$$P_{AC} \le L_A + R_C \qquad P_{CC} \le L_C + R_C \qquad \dots$$

$$P_{AG} \le L_A + R_G \qquad P_{CG} \le L_C + R_G \qquad \dots$$

$$P_{AU} \le L_A + R_U \qquad P_{CU} \le L_C + R_U \qquad \dots$$

$$P_{A-} \le L_A + R_- \qquad P_{C-} \le L_C + R_- \qquad \dots$$

$$P_{A-} \le L_A + R_- \qquad P_{C-} \le L_C + R_- \qquad \dots$$

Some scores filter better

$$P_{UA} = I \le L_U + R_A$$

 $P_{UG} = 4 \le L_U + R_G$

Option I:

$$L_U = R_A = R_G = 2$$

Option 2:
$$L_{11} = 0$$
, $R_{A} = 1$, $R_{C} = 1$

Assuming ACGU
$$\approx 25\%$$

Opt 1:

 $L_U = R_A = R_G = 2$

Opt 2:

 $L_U = 0, R_A = 1, R_G = 4$
 $L_U + (R_A + R_G)/2 = 2.5$

Optimizing filtering

For any nucleotide sequence x:

Viterbi-score(x) = max{ score(π) | π emits x } Forward-score(x) = Σ { score(π) | π emits x }

Expected Forward Score

 $E(L_i, R_i) = \sum_{\text{all sequences } x} Forward\text{-score}(x) *Pr(x)$

NB: E is a function of L_i, R_i only

Under 0th-order background model

Optimization:

Minimize $E(L_i, R_i)$ subject to score Lin.Ineq.s This is heuristic ("forward $\downarrow \Rightarrow$ Viterbi $\downarrow \Rightarrow$ filter \downarrow ") But still rigorous because "subject to score Lin.Ineq.s"

73

Calculating E(L_i, R_i)

 $E(L_i, R_i) = \sum_x Forward-score(x)*Pr(x)$

Forward-like: for every state, calculate expected score for all paths ending there; easily calculated from expected scores of predecessors & transition/emission probabilities/scores

74

Minimizing $E(L_i, R_i)$

Calculate E(L_i, R_i) symbolically, in terms of emission scores, so we can do partial derivatives for numerical convex optimization algorithm

Forward:

$$f_k(i) = P(x_1 \dots x_i, \ \pi_i = k)$$

 $f_l(i+1) = e_l(x_{i+1}) \sum_{l} f_k(i) a_{k,l}$

Viterbi:

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) \, a_{k,l})$$

$$\frac{\partial E(L_1, L_2, ...)}{\partial L_i}$$

Assignment of probabilities

Convex optimization problem

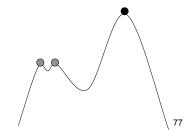
Constraints: enforce rigorous property
Objective function: filter as aggressively as possible

Problem sizes:

1000-10000 variables 10000-100000 inequality constraints

"Convex" Optimization

Convex: local max = global max; simple "hill climbing" works Nonconvex: can be many local maxima, ≪ global max; "hill-climbing" fails



Results: new ncRNAs (?)

Name	# Known	# New		
	(BLAST + CM)	(rigorous filter + CM)		
Pyrococcus snoRNA	57	123		
Iron response element	201	121		
Histone 3' element	1004	102*		
Retron msr	11	48		
Hammerhead I	167	26		
Hammerhead III	251	13		
U6 snRNA	1462	2		
U7 snRNA	312			
cobalamin riboswitch	170	7		

13 other families 5-1107 0

Estimated Filtering Efficiency

(139 Rfam 4.0 families)

	Filtering fraction	# families (compact)	# families (expanded)	
ت ت	< 10-4	105	110	~100x
break even	10-4 - 10-2	8	17	speedup
brea	.0110	11	3	
U	.1025	2	2	
	.2599	6	4	
	.99 - 1.0	7	3	

Averages 283 times faster than CM

Results: With additional work

	# with BLAST+CM	# with rigorous filter series + CM	# new				
Rfam tRNA	58609	63767	5158				
Group II intron	5708	6039	331				
tRNAscan-SE (human)	608	729	121				
tmRNA	226	247	21				
Lysine riboswitch	60	71	П				
And more							

81

"Additional work"

Profile HMM filters use no 2^{ary} structure info

They work well because, tho structure can be critical to function, there is (usually) enough primary sequence conservation to exclude most of DB

But not on all families (and may get worse?)

Can we exploit some structure (quickly)?

Idea I: "sub-CM"

for some hairpins

Idea 2: extra HMM states remember mate

Idea 3: try lots of combinations of "some hairpins"

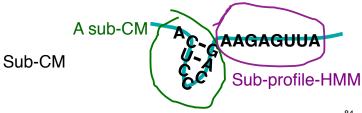
Idea 4: chain together several filters (select via Dijkstra)

82

Sub-CM filters

Full CM

Profile HMM



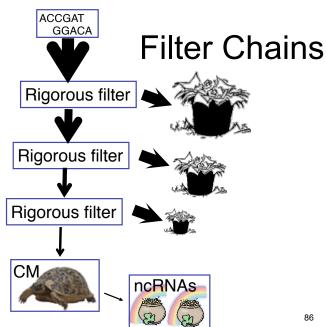
Store-pair filters

Full CM

Store pair

CŬCCCĂGĂĂGAGŬŬA

"Profile" HMM:



Why run filters in series?

	Filtering fraction	Run time (sec/Kbase)
Filter 1	0.25	1
Filter 2	0.01	10
CM	N/A	200

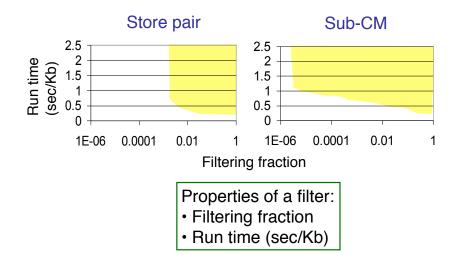
CM alone: 200 s/Kb

Filter $I \to CM$: I + 0.25*200 = 51 s/Kb

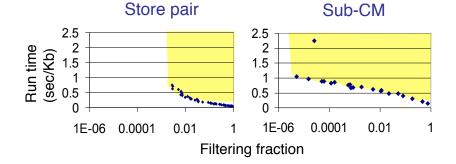
Filter 2 \rightarrow CM: 10 + 0.01*200 = 12 s/Kb

Filter $I \rightarrow$ Filter $2 \rightarrow$ CM:

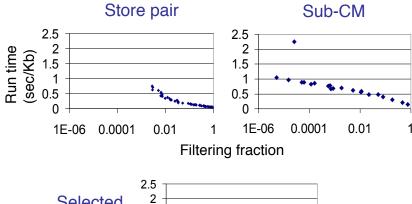
$$1 + 0.25*10 + 0.01*200 = 5.5 \text{ s/Kb}$$

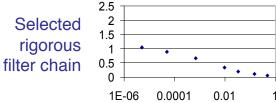


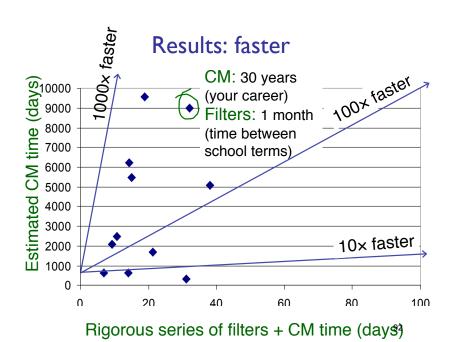
89



Simplified performance model (selectivity & speed)
Independence assumptions for base pairs
Use dynamic programming to rapidly explore base
pair combinations







Results: more sensitive than BLAST

	# with BLAST+CM	# with rigorous filters + CM	# new			
Rfam tRNA	58609	63767	5158			
Group II intron	5708	6039	331			
Iron response element	201	322	121			
tmRNA	226	247	21			
Lysine riboswitch	60	71	11			
And more						

93

Is there anything more to do?

Rigorous filters can be too cautious

E.g., 10 times slower than heuristic filters

Yet only I-3% more sensitive

We want to

Run scans faster with minimal loss of sensitivity Know empirically what sensitivity we're losing

Heuristic Filters

Rigorous filters optimized for worst case Possible to trade improved speed for small loss in sensitivity?

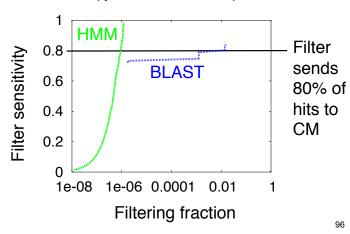
Yes – profile HMMs as before, but optimized for average case

"ML heuristic": train HMM from the infinite alignment generated by the CM

Often 10x faster, modest loss in sensitivity

Heuristic Filters ROC-like curves

(lysine riboswitch)



Heuristic Filters

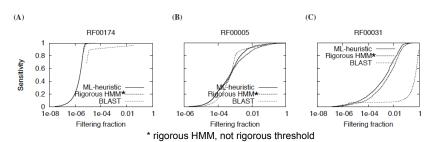
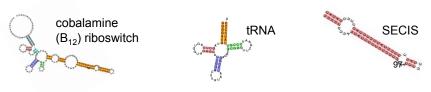
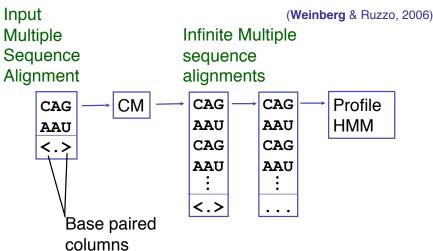


Fig. 1. Selected ROC-like curves. All plot sensitivity against filtering fraction, with filtering fraction in log scale. (A) RF00174 is typical of the other families; the ML-heuristic is slightly better than the rigorous profile HMM, and both often dramatically exceed BLAST. (B) Atypically, in RF00005, BLAST is superior, although only in one region. (C) BLAST performs especially poorly for RF00031. (Recall that rigorous scans were not possible for RF00031, so only \sim 90% of hits are known; see text.) The supplement includes all ROC-like curves, and the inferior ignore-SS.



Heuristic Profile HMMs



Software

Ravenna implements both rigorous and heuristic filters

Infernal (engine behind Rfam, for example) implements heuristic filters and some other accelerations

E,g., dynamic "banding" of dynamic programming matrix based on the insight that large deviations from consensus length must have low scores.

CM Search Summary

Still slower than we might like, but dramatic speedup over raw CM is possible with:

No loss in sensitivity (provably), or

Even faster with modest (and estimable) loss in sensitivity

Motif Discovery

Day 3

Our Plot So Far:

Covariance Models (CMs) represent conserved RNA sequence/structure motifs

They allow accurate search

Basic search is slow, but substantial speedup possible

Today:

Automated model construction & ncRNA discovery in prokaryotes

100

RNA Motif Discovery

CM's are great, but where do they come from?

An approach: comparative genomics

Search for motifs with common secondary structure in a set of functionally related sequences.

Challenges

Three related tasks

Locate the motif regions.

Align the motif instances.

Predict the consensus secondary structure.

Motif search space is huge!

Motif location space, alignment space, structure space.

RNA Motif Discovery

Typical problem: given a 10-20 unaligned sequences of 1-10kb, most of which contain instances of one RNA motif of 100-200bp -- find it.

Example: 5' UTRs of orthologous glycine cleavage genes from γ-proteobacteria

Example: corresponding introns of orthogolous vertebrate genes

Approaches

Align-First: Align sequences, then look for common structure

Fold-First: Predict structures, then try to align them

Joint: Do both together

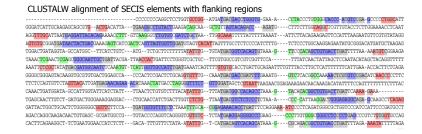
110

"Align First" Approach: Predict Struct from Multiple Alignment

... GA ... UC ... Compensatory
... GA ... UC ... mutations reveal
... GA ... UC ... structure (core of
"comparative
sequence analysis")
but usual alignment
algorithms penalize
them (twice)

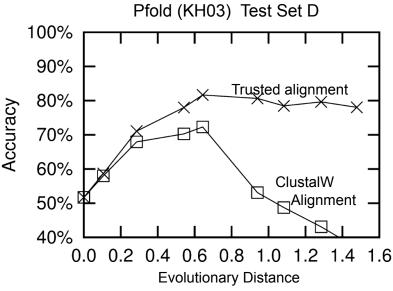
Pitfall for sequence-alignment-first approach

Structural conservation ≠ Sequence conservation
Alignment without structure information is unreliable



same-colored boxes should be aligned

111



Knudsen & Hein, Pfold: RNA secondary structure prediction using stochastic 114 context-free grammars, Nucleic Acids Research, 2003, v 31,3423–3428

Our Approach: CMfinder

RNA motifs from unaligned sequences

Simultaneous *local* alignment, folding and CM-based motif description via an EM-style learning procedure

Sequence conservation exploited, but not required

Robust to inclusion of unrelated and/or flanking sequence Reasonably fast and scalable

Produces a probabilistic model of the motif that can be directly used for homolog search

Approaches

Align-first: align sequences, then look for common structure

Fold-first: Predict structures, then try to align them

single-seq struct prediction only ~ 60% accurate; exacerbated by flanking seq; no biologically-validated model for structural alignment

Joint: Do both together Sankoff – good but slow Heuristic

117

Alignment → CM → Alignment

Similar to HMM, but slower

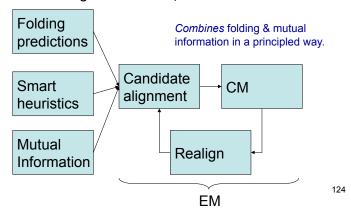
Builds on Eddy & Durbin, '94

But new way to infer which columns to pair, via a principled combination of mutual information and predicted folding energy

And, it's local, not global, alignment (harder)

CMFinder

Simultaneous alignment, folding & motif description Yao, Weinberg & Ruzzo, Bioinformatics, 2006



Structure Inference

Part of M-step is to pick a structure that maximizes data likelihood

We combine:

mutual information
position-specific priors for paired/unpaired
(based on single sequence thermodynamic folding predictions)
intuition: for similar seqs, little MI; fall back on singlesequence folding predictions
data-dependent, so not strictly Bayesian

Initial Alignment Heuristics

fold sequences separately candidates: regions with low folding energy compare candidates via "tree edit" algorithm find best "central" candidates & align to them BLAST anchors

127

 L_i = column i; $\sigma = (\alpha, \beta)$ the 2^{ary} struct, α = unpaired, β = paired cols

Our goal is to find $\hat{\sigma} = \arg \max_{\sigma} P(D, \sigma)$. Assuming independence of non-base paired columns, then

$$P(D|\sigma) = \prod_{k \in \alpha} P(L_k) \prod_{(i,j) \in \beta} P(L_i L_j)$$
 (2)

$$= \prod_{1 \le k \le l} P(L_k) \prod_{(i,j) \in \beta} \frac{P(L_i L_j)}{P(L_i)P(L_j)}$$
(3)

Let

128

$$I_{ij} = \log \frac{P(L_i L_j)}{P(L_i)P(L_j)}$$

With MLE params, I_{ii} is the *mutual information* between cols i and j

Let s_i be the prior for column i to be single stranded, and p_{ij} the prior for columns i,j to be base paired, then $P(\sigma) = \prod_{k \in \alpha} s_k \prod_{(i,j) \in \beta} p_{ij}$, and $P(D,\sigma)$ can be rewritten as

$$P(D,\sigma) = P(D|\sigma)P(\sigma)$$

$$= \prod_{1 \le k \le l} P(L_k) s_k \prod_{(i,j) \in \beta} \frac{P(L_i L_j)}{P(L_i)P(L_j)} \frac{p_{ij}}{s_i s_j}$$
(4)

Let

$$K_{ij} = \log\left(\frac{P(L_iL_j)}{P(L_i)P(L_j)}\frac{p_{ij}}{s_is_j}\right) = I_{ij} + \log\frac{p_{ij}}{s_is_j},$$

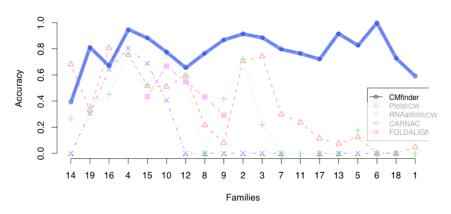
then the maximum likelihood structure σ maximizes $\sum_{(i,j)\in\beta} K_{ij}$. Can find it via a simple dynamic programming alg.

Summary of Rfam test families and results

ID	Family	Rfam ID	#seqs	%id	length	#hp	CMfinder	CW/Pfold	CW/RNAalifold	Carnac	Foldalign	ComRNA
1	Cobalamin	RF00174	71	49	216	4	0.59	0.05	0	X	-	0
2	ctRNA_pGA1	RF00236	17	74	83	2	0.91	0.70	0.72	0	0.86	0
3	Entero_CRE	RF00048	56	81	61	1	0.89	0.74	0.22	0	-	0
4	Entero_OriR	RF00041	35	77	73	2	0.94	0.75	0.76	0.80	0.52	0.52
5	glmS	RF00234	14	58	188	4	0.83	0.12	0.18	0	-	0.13
6	Histone3	RF00032	63	77	26	1	1	0	0	0	-	0
7	Intron_gpII	RF00029	75	55	92	2	0.80	0.30	0	0	-	0
8	IRE	RF00037	30	68	30	1	0.77	0.22	0	0	0.38	0
9	let-7	RF00027	9	69	84	1	0.87	0.08	0.42	0	0.71	0.78
10	lin-4	RF00052	9	69	72	1	0.78	0.51	0.75	0.41	0.65	0.24
11	Lysine	RF00168	48	48	183	4	0.77	0.24	0	X	-	0
12	mir-10	RF00104	11	66	75	1	0.66	0.59	0.60	0	0.48	0.33
13	Purine	RF00167	29	55	103	2	0.91	0.07	0	0	-	0.27
14	RFN	RF00050	47	66	139	4	0.39	0.68	0.26	0	-	0
15	Rhino_CRE	RF00220	12	71	86	1	0.88	0.52	0.52	0.69	0.41	0.61
16	s2m	RF00164	23	80	43	1	0.67	0.80	0.45	0.64	0.63	0.29
17	S_box	RF00162	64	66	112	3	0.72	0.11	0	0	-	0
18	SECIS	RF00031	43	43	68	1	0.73	0	0	0	-	0
19	Tymo_tRNA-like	RF00233	22	72	86	4	0.81	0.33	0.36	0.30	0.80	0.48
				Avera	ige Accui	racy:	0.79	0.36	0.28	0.17	0.60	0.19
				Avera	ige Speci	ficity:	0.81	0.42	0.57	0.83	0.60	0.65
				Avera	age Sensi	tivity:	0.77	0.36	0.23	0.13	0.61	0.17
											13:	2

CMfinder Accuracy

(on Rfam families with flanking sequence)



131

Applications: ncRNA discovery in prokaryotes and vertebrates

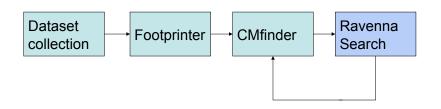
Key issue in both cases is exploiting prior knowledge to focus on promising data

Application I

A Computational Pipeline for High Throughput Discovery of *cis*-Regulatory Noncoding RNA in Prokaryotes.

Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo. PLoS Computational Biology. 3(7): e126, July 6, 2007.

Use the Right Data; Do Genome Scale Search



Predicting New cis-Regulatory RNA Elements

Goal:

Given unaligned UTRs of coexpressed or orthologous genes, find common structural motifs

Difficulties:

Low sequence similarity: alignment difficult Varying flanking sequence Motif missing from some input genes

137

Right Data: Why/How

We can recognize, say, 5-10 good examples amidst 20 extraneous ones (but not 5 in 200 or 2000) of length 1k or 10k (but not 100k)

Regulators often near regulatees (protein coding genes), which are usually recognizable cross-species So, find similar genes ("homologs"), look at adjacent DNA

(Not strategy used in vertebrates - 1000x larger genomes)

Genome Scale Search: Why

Many riboswitches, e.g., are present in ~5 copies per genome

In most close relatives

More examples give better model, hence even more examples, fewer errors

More examples give more clues to function - critical for wet lab verification

But inclusion of non-examples can degrade motif...

Approach

Get bacterial genomes

For each gene, get 10-30 close orthologs (CDD)

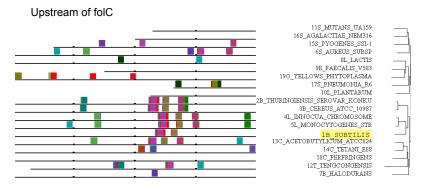
Find most promising genes, based on conserved sequence motifs (Footprinter)

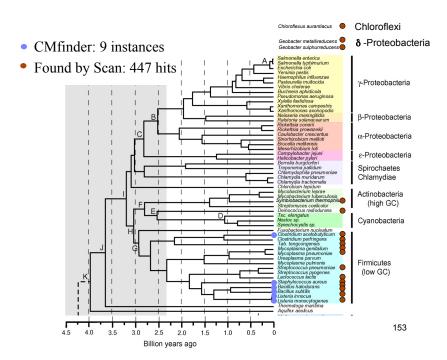
From those, find structural motifs (CMfinder)

Genome-wide search for more instances (Ravenna)

Expert analyses (Breaker Lab, Yale)

Footprinter finds patterns of conservation

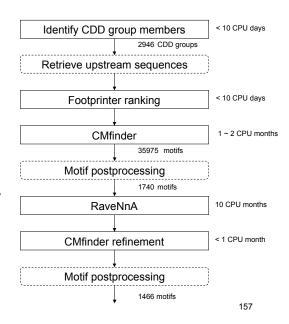




143

Processing Times

Input from ~70 complete Firmicute genomes available in late 2005-early 2006, totaling ~200 megabases



	Membership			Overlap			Structure			
		#	Sn	Sp	nt	Sn	Sp	bp	Sn	Sp
RF00174	Cobalamin	183	0.74 ¹	0.97	152	0.75	0.85	20	0.60	0.77
RF00504	Glycine	92	0.56 ¹	0.96	94	0.94	0.68	17	0.84	0.82
RF00234	glmS	34	0.92	1.00	100	0.54	1.00	27	0.96	0.97
RF00168	Lysine	80	0.82	0.98	111	0.61	0.68	26	0.76	0.87
RF00167	Purine	86	0.86	0.93	83	0.83	0.55	17	0.90	0.95
RF00050	RFN	133	0.98	0.99	139	0.96	1.00	12	0.66	0.65
RF00011	RNaseP_bact_b	144	0.99	0.99	194	0.53	1.00	38	0.72	0.78
RF00162	S_box	208	0.95	0.97	110	1.00	0.69	23	0.91	0.78
RF00169	SRP_bact	177	0.92	0.95	99	1.00	0.65	25	0.89	0.81
RF00230	T-box	453	0.96	0.61	187	0.77	1.00	5	0.32	0.38
RF00059	THI	326	0.89	1.00	99	0.91	0.69	13	0.56	0.74
RF00442	ykkC-yxkD	19	0.90	0.53	99	0.94	0.81	18	0.94	0.68
RF00380	ykoK	49	0.92	1.00	125	0.75	1.00	27	0.80	0.95
RF00080	yybP-ykoY	41	0.32	0.89	100	0.78	0.90	18	0.63	0.66
mean		145	0.84	0.91	121	0.81	0.82	21	0.75	0.77
median		113	0.91	0.97	105	0.81	0.83	19	0.78	0.78

Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments.

Membership: # of seqs in overlap between our predictions and Rfam's, the sensitivity (Sn) and specificity (Sp) of our membership predictions. Overlap: the avg len of overlap between our predictions and Rfam's (nt), the fractional lengths of the overlapped region in Rfam's predictions (Sn) and in ours (Sp). Structure: the avg # of correctly predicted canonical base pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of our predictions. ¹After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin incressed to 76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%.

Table I: Motifs that correspond to Rfam families

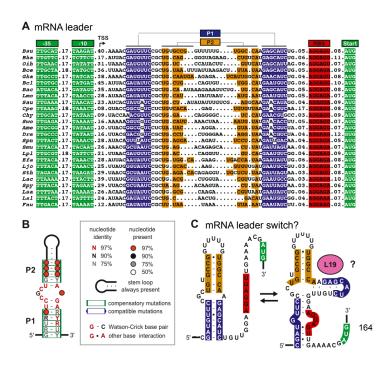
	Rank		Score	#		ID	Gene	CDD Description	Rfam
=	CMF	FP		RAV					DECCCCC T I
0	43	107	3400	367	11	9904	IIvB	Thiamine pyrophosphate-requiring enzymes	RF00230 T-box
1	10	344	3115	96	22	13174	COG3859	Predicted membrane protein	RF00059 THI
2	77	1284	2376	112	6	11125	MetH	Methionine synthase I specific DNA methylase	RF00162 S_box
3	0	5	2327	30	26			Predicted N6-adenine-specific DNA methylase	RF00011 RNaseP_bact_b
4	6	66	2228	49	18	4383	DHBP	3,4-dihydroxy-2-butanone 4-phosphate synthase	RF00050 RFN
7	145	952	1429	51	7	10390	GuaA	GMP synthase	RF00167 Purine
8	17	108	1322	29	13	10732	GcvP	Glycine cleavage system protein P	RF00504 Glycine
9	37	749	1235	28	7	24631	DUF149	Uncharacterised BCR, YbaB family COG0718	RF00169 SRP_bact
10	123	1358	1222	36	6	10986	CbiB	Cobalamin biosynthesis protein CobD/CbiB	RF00174 Cobalamin
20	137	1133	899	32	7	9895	LysA	Diaminopimelate decarboxylase	RF00168 Lysine
21	36	141	896	22	10	10727	TerC	Membrane protein TerC	RF00080 yybP-ykoY
39	202	684	664	25	5	11945	MgtE	Mg/Co/Ni transporter MgtE	RF00380 ykoK
40	26	74	645	19	18	10323	GlmS	Glucosamine 6-phosphate synthetase	RF00234 glmS
53	208	192	561	21	5	10892	OpuBB	ABC-type proline/glycine betaine transport systems	RF00005 tRNA ¹
122	99	239	413	10	7	11784	EmrE	Membrane transporters of cations and cationic drug	RF00442 ykkC-yxkD
255	392	281	268	8	6	10272	COG0398	Uncharacterized conserved protein	RF00023 tmRNA

Table 1: Motifs that correspond to Rfam families. "Rank": the three columns show ranks for refined motif clusters after genome scans ("RAV"), CMfinder motifs before genome scans ("CMF"), and FootPrinter results ("FP"). We used the same ranking scheme for RAV and CMF. "Score"

158

Table 3: High ranking motifs not found in Rfam

ank	#	CDD	Gene: Description	Annotation
			DHOase IIa: Dihydroorotase	PyrR attenuator [22]
15	33	10097	RplL: Ribosomal protein L7/L1	L10 r-protein leader; see Supp
19	36	10234	RpsF: Ribosomal protein S6	S6 r-protein leader
22	32	10897	COG1179: Dinucleotide-utilizing enzymes	6S RNA [25]
	27		RpsJ: Ribosomal protein S10	S10 r-protein leader; see Supp
29	11	15150	Resolvase: N terminal domain	
			InfC: Translation initiation factor 3	IF-3 r-protein leader; see Supp
41	26	10393	RpsD: Ribosomal protein S4 and related proteins	S4 r-protein leader; see Supp [3
44	30	10332	GroL: Chaperonin GroEL	HrcA DNA binding site [46]
46	33	25629	Ribosomal L21p: Ribosomal prokaryotic L21 protein	L21 r-protein leader; see Supp
50	11		Cad: Cadmium resistance transporter	[47]
	19		RplB: Ribosomal protein L2	S10 r-protein leader
55	7		RNA pol Rpb2 1: RNA polymerase beta subunit	
69	9	13148	COG3830: ACT domain-containing protein	
72	28	4174	Ribosomal S2: Ribosomal protein S2	S2 r-protein leader
74	9	9924	RpsG: Ribosomal protein S7	S12 r-protein leader
86	6	12328	COG2984: ABC-type uncharacterized transport system	•
			CtsR: Firmicutes transcriptional repressor of class III	CtsR DNA binding site [48]
			Formyl trans N: Formyl transferase	
			PurE: Phosphoribosylcarboxyaminoimidazole	
117	5	13411	COG4129: Predicted membrane protein	
120	10	10075	RpIO: Ribosomal protein L15	L15 r-protein leader
121	9	10132	RpmJ: Ribosomal protein L36	IF-1 r-protein leader
			Cna B: Cna protein B-type domain	•
130	9	25424	Ribosomal S12: Ribosomal protein S12	S12 r-protein leader
131	9	16769	Ribosomal L4: Ribosomal protein L4/L1 family	L3 r-protein leader
136	7	10610	COG0742: N6-adenine-specific methylase	ylbH putative RNA motif [4]
140	12	8892	Pencillinase R: Penicillinase repressor	Blal, Mecl DNA binding site [49
			Ribosomal S9: Ribosomal protein S9/S16	L13 r-protein leader; Fig 3
160	27	1790	Ribosomal L19: Ribosomal protein L19	L19 r-protein leader; Fig 2
164	6	9932	GapA: Glyceraldehyde-3-phosphate dehydrogenase/erythrose	-
			COG4708: Predicted membrane protein	
176	7	10199	COG0325: Predicted enzyme with a TIM-barrel fold	
182	9	10207	RpmF: Ribosomal protein L32	L32 r-protein leader
187	11	27850	LDH: L-lactate dehydrogenases	163
190	11	10094	CspR: Predicted rRNA methylase	163
194	9	10353	FusA: Translation elongation factors	EF-G r-protein leader

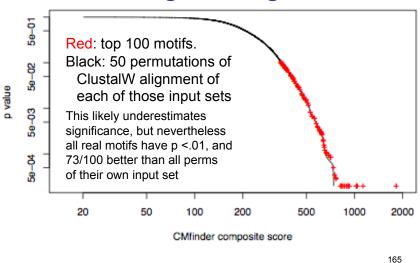


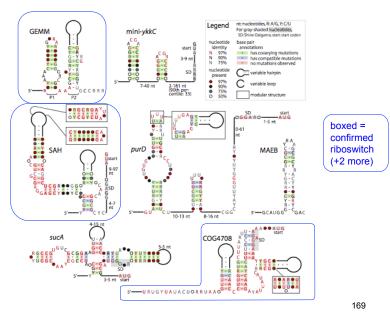
Application II

Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline.

Weinberg, Barrick, Yao, Roth, Kim, Gore, Wang, Lee, Block, Sudarsan, Neph, Tompa, Ruzzo and Breaker. Nucl. Acids Res., July 2007 35: 4809-4819.

Estimating Motif Significance





Weinberg, et al. Nucl. Acids Res., July 2007 35: 4809-4819.

New Riboswitches

(all lab-verified)

SAM – IV (S-adenosyl methionine)

SAH (S-adenosyl homocystein)

MOCO (Molybdenum Cofactor)

PreQI – II (queuosine precursor)

GEMM (cyclic di-GMP)

Motif RNA? Phylum/class M,V Cov. Cis? Switch? Non cis GEMM Y Y Widespread V 21 322 12/309 Y Widespread 15 105 3/81 Moco Y M,V SAH Y Y Proteobacteria M,V22 42 0/41Y SAM-IV Y Actinobacteria 28 2/54 54 COG4708 M,V 23 0/23 Firmicutes 8 sucAβ-proteobacteria 40 0/40 23S-methyl Y 12 38 1/37 Firmicutes n 12 50 2/50 hemBβ-proteobacteria (anti-hem B)(n) (n) (37)(31/37)MAEB β-proteobacteria 3 662 15/646 n mini-vkkC Widespread 17 208 1/205 purDε-proteobacteria 16 21 0/206C Actinobacteria 21 27 1/27 Ν 102 39/99 alphaα-proteobacteria 16 transposases Actinobacteria 27 0/27 excisionase ATPC Cvanobacteria 11 29 0/23 Cvanobacteria 26 0/23 cvano-30S 10 97 lacto-1 Firmicutes 18/95 lacto-2 Firmicutes 14 357 67/355 TD-1 Spirochaetes 25 29 2/29 TD-2 Spirochaetes 11 36 17/36 n Firmicutes 6 246 112/189 coccus-1 gamma-150 y-proteobacteria 27 6/27 172

GEMM regulated genes

Pili and flagella Chitin

Secretion Membrane Peptide

Chemotaxis Other - tfoX, cytochrome c

Signal transduction

GEMM senses a "second messenger" molecule (cyclic di-GMP) produced for signal transduction or for cell-cell communication.

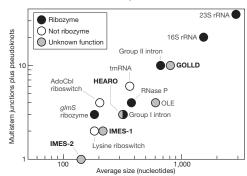
nature Vol 462|3 December 2009|doi:10.1038/nature08586

LETTERS

170

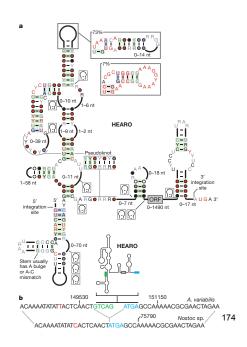
Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis

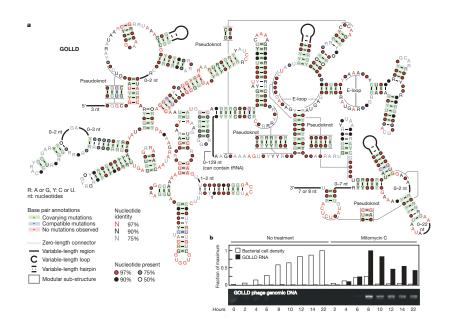
Zasha Weinberg^{1,2}, Jonathan Perreault², Michelle M. Meyer² & Ronald R. Breaker^{1,2,3}



171

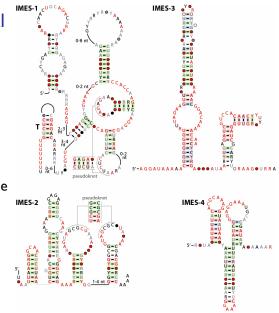
RNAs of unusual size and complexity





RNAs of unusual abundance

More abundant than 5S rRNA From unknown marine organisms



Day 4

Our Plot So Far:

Covariance Models (CMs) represent conserved RNA sequence/structure motifs

They allow accurate search, moderately fast (if clever) Automated model construction / ncRNA discovery in prokaryotes, given careful choice of input data

Today:

ncRNA discovery in vertebrates

Course Project Presentations

Thursday, 12/17, Noon – 5:00, CSE 678

Aim for 20-30 minute talk, plus 5-10 minutes for questions.

Everyone's invited

178

Rfam Entries in Bacteria

Species name	#Fams	#entries	Genome bp
Roseiflexus sp. RS-1	17	848	5801598
Thermoanaerobacter tengcongensis	27	416	2689445
Clostridium difficile	23	297	4290252
Bacillus thuringiensis	30	238	5257091
Bacillus anthracis	30	232	5227293
Shewanella putrefaciens	23	221	4659220
Yersinia pestis Antiqua	46	207	4702289
Escherichia coli	73	205	5528445
Salmonella typhimurium	85	203	4857432

Vertebrate ncRNAs

Some Results

Rfam Entries in Eukaryotes

Species name	#fams	#	Genome bp
Homo sapiens ((549 / 7892??))	1537	886 I	3603093901
Canis lupus familiaris (dog)	1425	6418	2445110183
Pan troglodytes (chimpanzee)	1293	6223	2747703341
Mus musculus (mouse)	1146	5894	2654911517
Ornithorhynchus anatinus (platypus)	169	463 I	389485741
Rattus norvegicus (Norway rat)	1071	4309	2303865484
Arabidopsis thaliana (thale cress)	237	1255	93654490
Caenorhabditis elegans (worm)	144	876	100267632
Drosophila melanogaster (fruit fly)	108	493	96018145
Schizosaccharomyces pombe (yeast)	15	131	6992687
Plasmodium falciparum (malaria)	18	35	14214561

of Human hits for some Rfam families

	_	# regions
Family	Accession	in human
7SK	RF00100	1279
SNORA7	RF00409	41
Histone3	RF00032	618
UI	RF00003	682
Y_RNA	RF00019	4516
IRE	RF00037	254

Finding NOVEL vertebrate ncRNAs

Natural approach : Align, Fold, Score
UCSC Browser tracks for Evofold, RNAz
Thousands of candidates

1

Human Predictions

Evofold

S Pedersen, G Bejerano, A Siepel, K Rosenbloom, K Lindblad-Toh, ES Lander, J Kent, W Miller, D Haussler, "Identification and classification of conserved RNA secondary structures in the human genome." PLoS Comput. Biol., 2, #4 (2006) e33.

48,479 candidates (~70% FDR?)

RNAz

S Washietl, IL Hofacker, M Lukasser, A Hutenhofer, PF Stadler, "Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome." Nat. Biotechnol., 23, #11 (2005) 1383-90.

30,000 structured RNA elements

- 1,000 conserved across all vertebrates.
- ~1/3 in introns of known genes, ~1/6 in UTRs
- ~1/2 located far from any known gene

186

Finding vertebrate ncRNAs

Previous approaches (Evofold, RNAz) have found thousands of candidates, but trusted the vertebrate genome alignments

Find even more if you don't?

FOLDALIGN

E Torarinsson, M Sawera, JH Havgaard, M Fredholm, J Gorodkin, "Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure." Genome Res., 16, #7 (2006) 885-9.

1800 candidates from 36970 (of 100,000) pairs

189

CMfinder

Torarinsson, Yao, Wiklund, Bramsen, Hansen, Kjems, Tommerup, Ruzzo and Gorodkin. Comparative genomics beyond sequence based alignments: RNA structures in the ENCODE regions. Genome Research, Feb 2008, 18(2): 242-251 PMID: 18096747 6500 candidates in ENCODE alone (better FDR, but still high)

ncRNA discovery in Vertebrates

Natural approach : Align, Fold, Score Previous studies focus on highly conserved

regions (Washietl, Pedersen et al. 2007)

Evofold (Pedersen et al. 2006)

RNAz (Washietl et al. 2005)

We explore regions with weak sequence conservation, where alignments aren't trustworthy Thousands of candidates

Thousands more

191

CMfinder Search in Vertebrates

Extract ENCODE Multiz alignments Remove exons, most conserved elements. 56017 blocks, 8.7M bps.

Trust 17-way alignment for orthology, not for detailed alignment

193

Apply CMfinder to both strands.

10,106 predictions, 6,587 clusters.

High false positive rate, but still suggests 1000's of RNAs.

(We've applied CMfinder to whole human genome: many 100's of CPU years. Analysis in progress.)

Overlap with known transcripts

Input regions include only one known ncRNA hsa-mir-483, and we found it.

40% intergenetic, 60% overlap with protein coding gene

Sense	Antisense	Both	Intron	5'UTR	3'UTR
1332	1721	884	3274	551	89
(33.8%)	(43.7%)	(22.5%)	(83.1%)	(14%)	(2.3%)

195

Assoc w/ coding genes

Many known human ncRNAs lie in introns Several of our candidates do, too, including some of the tested ones

#6: SYN3 (Synapsin 3)

#10: TIMP3, antisense within SYN3 intron

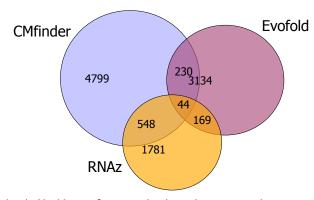
#9: GRM8 (glutamate receptor metabotropic 8)

Overlap w/ Indel Purified Segments

IPS presumed to signal purifying selection
Majority (64%) of candidates have >45% G+C
Strong P-value for their overlap w/ IPS

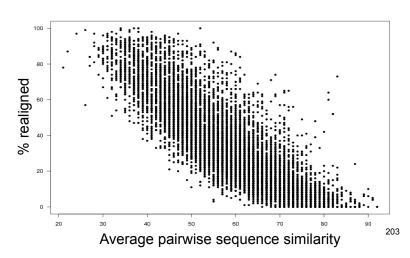
G+C	data	Р	N	Expected	Observed	P-value	%
0-35	igs	0.062	380	23	24.5	0.430	5.8%
35-40	igs	0.082	742	61	70.5	0.103	11.3%
40-45	igs	0.082	1216	99	129.5	0.00079	18.5%
45-50	igs	0.079	1377	109	162.5	5.16E-08	20.9%
50-100	igs	0.070	2866	200	358.5	2.70E-31	43.5%
all	igs	0.075	6581	491	747.5	1.54E-33	100.0%

Comparison with Evofold, RNAz



Small overlap (w/ highly significant p-values) emphasizes complementarity
Strong association with "Indel purified segments" - I.e., apparently under selection
Strong association with known genes

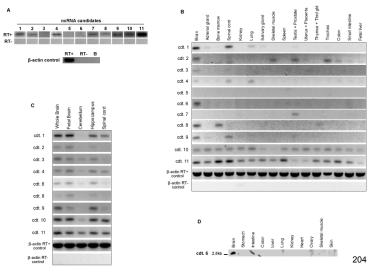
Realignment



Alignment Matters

202

10 of 11 top (differentially) expressed



Summary

Lots of structurally conserved ncRNA
Functional significance often unclear
But high rate of confirmed tissue-specific expression in (small) set of top candidates in humans
BIG CPU demands...
Still need for further methods development & application

Course Wrap Up

Summary

ncRNA is a "hot" topic
For family homology modeling: CMs
Training & search like HMM (but slower)
Dramatic acceleration possible
Automated model construction possible
New computational methods yield new discoveries
Many open problems

212

"High-Throughput BioTech"

Sensors

DNA sequencing

Microarrays/Gene expression

Mass Spectrometry/Proteomics

Protein/protein & DNA/protein interaction

Controls

Cloning

Gene knock out/knock in

RNAi

"Grand Challenge" problems

CS Points of Contact

Scientific visualization

Gene expression patterns

Databases

Integration of disparate, overlapping data sources
Distributed genome annotation in face of shifting underlying coordinates

AI/NLP/Text Mining

Information extraction from journal texts with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models,...

Machine learning

System level synthesis of cell behavior from low-level heterogeneous data (DNA sequence, gene expression, protein interaction, mass spec,

Algorithms

... 222

Frontiers & Opportunities

Open Problems:

splicing, alternative splicing
multiple sequence alignment (genome scale, w/ RNA etc.)
protein & RNA structure
interaction modeling
network models
RNA trafficing
ncRNA discovery

Frontiers & Opportunities

New data:

Proteomics, SNP, arrays CGH, comparative sequence information, methylation, chromatin structure, ncRNA, interactome

New methods:

graphical models? rigorous filtering?

Data integration

many, complex, noisy sources

Systems Biology

223

Exciting Times

Lots to do
Various skills needed
I hope I've given you a taste of it

Thanks!