
RNA Search and ���
Motif Discovery	



CSE 527���
Computational Biology	





Day 1	



Last lecture: ���
many biologically interesting roles for RNA	



Today:	


Covariance Models (CMs) represent 
conserved RNA sequence/structure motifs	
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Computational Problems	



How to predict secondary structure	


How to model an RNA “motif” ���

(I.e., sequence/structure pattern)	



Given a motif, how to search for instances	


Given (unaligned) sequences, find motifs	


How to score discovered motifs	


How to leverage prior knowledge	
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Motif Description	





RNA Motif Models	



“Covariance Models” (Eddy & Durbin 1994)	


aka profile stochastic context-free grammars	


aka hidden Markov models on steroids	



Model position-specific nucleotide 
preferences and base-pair preferences	



Pro: accurate	


Con: model building hard, search sloooow	
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What	



A probabilistic model for RNA families	


The “Covariance Model”	


≈ A Stochastic Context-Free Grammar	


A generalization of a profile HMM	



Algorithms for Training	


From aligned or unaligned sequences	


Automates “comparative analysis”	


Complements Nusinov/Zucker RNA folding	



Algorithms for searching	
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Main Results	



Very accurate search for tRNA	


(Precursor to tRNAscanSE - current favorite)	



Given sufficient data, model construction 
comparable to, but not quite as good as, ���
human experts	



Some quantitative info on importance of 
pseudoknots and other tertiary features	
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Probabilistic Model Search	



As with HMMs, given a sequence, you calculate 
likelihood ratio that the model could generate the 
sequence, vs a background model	


You set a score threshold	


Anything above threshold → a “hit”	


Scoring:	



“Forward” / “Inside” algorithm - sum over all paths	


Viterbi approximation - find single best path���
(Bonus: alignment & structure prediction)	



13 



Example: 
searching for 
tRNAs���
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How to model an RNA “Motif”?	



Conceptually, start with a profile HMM:	


from a multiple alignment, estimate nucleotide/ insert/delete 
preferences for each position	


given a new seq, estimate likelihood that it could be generated by 
the model, & align it to the model	



all G mostly G del ins 
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How to model an RNA “Motif”?	



Add “column pairs” and pair emission probabilities 
for base-paired regions	



paired columns <<<<<<<                         >>>>>>> 
   …                               … 



Mj: 	

Match states (20 emission probabilities)	


Ij: 	

Insert states (Background emission probabilities)	


Dj: 	

Delete states (silent - no emission)	



Profile Hmm Structure	
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CM Structure	



A: Sequence + structure	



B: the CM “guide tree”	



C: probabilities of 
letters/ pairs & of indels	



Think of each branch 
being an HMM emitting 
both sides of a helix (but 
3’ side emitted in 
reverse order)	





Overall CM 
Architecture	


One box (“node”) per node 
of guide tree	


BEG/MATL/INS/DEL just 
like an HMM	


MATP & BIF are the key 
additions: MATP emits pairs 
of symbols, modeling base-
pairs; BIF allows multiple 
helices	
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CM Viterbi Alignment���
(the “inside” algorithm)	



€ 

€ 

xi = ith letter of input
xij = substring i,..., j of input
Tyz = P(transition y→ z)

Exi ,x j
y = P(emission of xi,x j from state y)

Sij
y =maxπ logP(xij gen'd starting in state y via path π )
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CM Viterbi Alignment���
(the “inside” algorithm)	



€ 
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€ 

Sij
y =maxπ logP(xij generated starting in state y via path π )

Sij
y =

maxz[Si+1, j−1
z + logTyz + logExi ,x j

y ] match pair
maxz[Si+1, j

z + logTyz + logExi
y ] match/insert left

maxz[Si, j−1
z + logTyz + logEx j

y ] match/insert right
maxz[Si, j

z + logTyz] delete
maxi<k≤ j[Si,k

yleft + Sk+1, j
yright ] bifurcation

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

Time O(qn3), q states, seq len n Time O(qn3), q states, seq len n 
compare: O(qn) for profile HMM 
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Covariation is strong evidence for base pairing 
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mRNA leader                

mRNA leader switch?              



Mutual Information	



Max when no seq conservation but perfect pairing	



MI = expected score gain from using a pair state	



Finding optimal MI, (i.e. opt pairing of cols) is hard(?)	



Finding optimal MI without pseudoknots can be done 
by dynamic programming	



€ 

Mij = fxi,xjxi,xj∑ log2
fxi,xj
f xi f xj

; 0 ≤ Mij ≤ 2
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* 1 2 3 4 5 6 7 8 9 * MI: 1 2 3 4 5 6 7 8 9 i,j: 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,4 3,5 3,6 3,7 3,8 3,9 4,5 4,6 4,7 4,8 4,9 5,6 5,7 5,8 5,9 6,7 6,8 6,9 7,8
A G A U A A U C U 9 0 0 0 0 0 0 0 0 AG AA AU AA AA AU AC AU GA GU GA GA GU GC GU AU AA AA AU AC AU UA UA UU UC UU AA AU AC AU AU AC AU UC
A G A U C A U C U 8 0 0 0 0 0 0 0 AG AA AU AC AA AU AC AU GA GU GC GA GU GC GU AU AC AA AU AC AU UC UA UU UC UU CA CU CC CU AU AC AU UC
A G A C G U U C U 7 0 0 2 0.30 0 1 AG AA AC AG AU AU AC AU GA GC GG GU GU GC GU AC AG AU AU AC AU CG CU CU CC CU GU GU GC GU UU UC UU UC
A G A U U U U C U 6 0 0 1 0.55 1 AG AA AU AU AU AU AC AU GA GU GU GU GU GC GU AU AU AU AU AC AU UU UU UU UC UU UU UU UC UU UU UC UU UC
A G C C A G G C U 5 0 0 0 0.42 AG AC AC AA AG AG AC AU GC GC GA GG GG GC GU CC CA CG CG CC CU CA CG CG CC CU AG AG AC AU GG GC GU GC
A G C G C G G C U 4 0 0 0.30 AG AC AG AC AG AG AC AU GC GG GC GG GG GC GU CG CC CG CG CC CU GC GG GG GC GU CG CG CC CU GG GC GU GC
A G C U G C G C U 3 0 0 AG AC AU AG AC AG AC AU GC GU GG GC GG GC GU CU CG CC CG CC CU UG UC UG UC UU GC GG GC GU CG CC CU GC
A G C A U C G C U 2 0 AG AC AA AU AC AG AC AU GC GA GU GC GG GC GU CA CU CC CG CC CU AU AC AG AC AU UC UG UC UU CG CC CU GC
A G G U A G C C U 1 AG AG AU AA AG AC AC AU GG GU GA GG GC GC GU GU GA GG GC GC GU UA UG UC UC UU AG AC AC AU GC GC GU CC
A G G G C G C C U AG AG AG AC AG AC AC AU GG GG GC GG GC GC GU GG GC GG GC GC GU GC GG GC GC GU CG CC CC CU GC GC GU CC
A G G U G U C C U AG AG AU AG AU AC AC AU GG GU GG GU GC GC GU GU GG GU GC GC GU UG UU UC UC UU GU GC GC GU UC UC UU CC
A G G C U U C C U AG AG AC AU AU AC AC AU GG GC GU GU GC GC GU GC GU GU GC GC GU CU CU CC CC CU UU UC UC UU UC UC UU CC
A G U A A A A C U AG AU AA AA AA AA AC AU GU GA GA GA GA GC GU UA UA UA UA UC UU AA AA AA AC AU AA AA AC AU AA AC AU AC
A G U C C A A C U AG AU AC AC AA AA AC AU GU GC GC GA GA GC GU UC UC UA UA UC UU CC CA CA CC CU CA CA CC CU AA AC AU AC
A G U U G C A C U AG AU AU AG AC AA AC AU GU GU GG GC GA GC GU UU UG UC UA UC UU UG UC UA UC UU GC GA GC GU CA CC CU AC
A G U U U C A C U AG AU AU AU AC AA AC AU GU GU GU GC GA GC GU UU UU UC UA UC UU UU UC UA UC UU UC UA UC UU CA CC CU AC

MI: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 1.0 2.0 0.0 0.0 0.4 0.5 0.3 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
fxi,xj:

A 16 0 4 2 4 4 4 0 0 AA 0 4 2 4 4 4 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 1 1 1 0 0 2 1 0 0 2 0 0 0
C 0 0 4 4 4 4 4 16 0 AC 0 4 4 4 4 4 16 0 0 0 0 0 0 0 0 1 1 0 0 4 0 0 1 0 2 0 0 1 4 0 0 4 0 4
G 0 16 4 2 4 4 4 0 0 AG 16 4 2 4 4 4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0 0 0
U 0 0 4 8 4 4 4 0 16 AU 0 4 8 4 4 4 0 16 0 0 0 0 0 0 0 3 1 2 4 0 4 1 0 0 0 2 0 1 0 4 2 0 4 0

CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 2 1 0 0 2 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 4 0 1 0 1 4 0 0 1 4 0 0 4 0 4
CG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 0 0 1 1 1 0 0 2 1 0 0 2 0 0 0
CU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 4 1 2 1 0 4 0 1 0 4 0 0 4 0
GA 0 0 0 0 0 0 0 0 4 2 4 4 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
GC 0 0 0 0 0 0 0 0 4 4 4 4 4 16 0 1 1 0 4 4 0 2 0 1 2 0 2 1 4 0 2 4 0 4
GG 0 0 0 0 0 0 0 0 4 2 4 4 4 0 0 1 1 2 0 0 0 0 2 1 0 0 0 1 0 0 2 0 0 0
GU 0 0 0 0 0 0 0 0 4 8 4 4 4 0 16 2 1 2 0 0 4 0 0 0 0 2 2 1 0 4 0 0 4 0
UA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 0 0 2 2 2 0 0 0 1 0 0 0 0 0 0
UC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 4 0 1 3 2 8 0 2 1 4 0 2 4 0 4
UG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 1 1 0 0 0 1 0 0 0 0 0 0
UU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 4 2 2 3 0 8 2 1 0 4 2 0 4 0

N= 9 log dealy:
AA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0.06 0.06 0.063 0 0 0.13 0 0 0 0.125 0 0 0
AC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0 0 0 0 0 0 0 0
AG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.063 0 0 0.13 0 0 0 0 0 0 0
AU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0.13 0.5 0 0 0.06 0 0 0 0 0 0 0 0 0.125 0 0 0
CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0.125 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0.13 0.5 0 0 0 0 0 0 0 0.13 0 0 0 0.125 0 0 0
CU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0
GA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0.25 0 0.063 0 0 0.13 0 0 0 0.125 0 0 0
GG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0.13 0 0 0 0 0.25 0.063 0 0 0 0 0 0 0.125 0 0 0
GU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0
UA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0.13 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 -0.1 0.11 0 0 0 0.13 0 0 0 0.125 0 0 0
UG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 -0.1 -0.06 0 0 0 0 0 0 0 0 0 0
UU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0.13 0 0 0 0.125 0 0 0

M.I. Example (Artificial)	



Cols 1 & 9, 2 & 8: perfect conservation & might be 
base-paired, but unclear whether they are.  M.I. = 0 

Cols 3 & 7: No conservation, but always W-C pairs, 
so seems likely they do base-pair.  M.I. = 2 bits. 

Cols 7->6: unconserved, but each letter in 7 has 
only 2 possible mates in 6.  M.I. = 1 bit.	
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Find best (max total MI) subset of column pairs 
among i…j, subject to absence of pseudo-knots���

“Just like Nussinov/Zucker folding”	



BUT, need enough data---enough sequences at right 
phylogenetic distance	



MI-Based Structure-Learning���

€ 

Si, j =max
Si, j−1
maxi≤k< j−4 Si,k−1 + Mk, j + Sk+1, j−1

⎧ 
⎨ 
⎩ 

36 

j  unpaired 

 j paired 



Primary vs Secondary Info	
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disallowing   allowing 
pseudoknots  

€ 

max j Mi, ji=1

n
∑⎛ ⎝ ⎜ 

⎞ 
⎠ 
⎟ /2



Comparison to TRNASCAN	



Fichant & Burks - best heuristic then	


97.5% true positive	


0.37 false positives per MB	



CM A1415 (trained on trusted alignment)	


> 99.98% true positives	


< 0.2 false positives per MB	



Current method-of-choice is “tRNAscanSE”, a CM-
based scan with heuristic pre-filtering (including 
TRNASCAN?) for performance reasons.  	
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tRNAScanSE	



Uses 3 older heuristic tRNA finders as 
prefilter	



Uses CM built as described for final scoring	


Actually 3(?) different CMs	


	

eukaryotic nuclear	


	

prokaryotic	



	

organellar 	


Used in all genome annotation projects	
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An Important Application: ���
Rfam	





Rfam – an RNA family DB���
Griffiths-Jones, et al., NAR ’03, ’05, ’08	



Biggest scientific computing user in Europe - 
1000 cpu cluster for a month per release	



Rapidly growing:	


Rel 1.0, 1/03:    25 families,    55k instances	



Rel 7.0, 3/05:  503 families, >300k instances	



Rel 9.0, 7/08:   603 families,  896k instances���
Rel 9.1, 1/09: 1372 families,     ??? instances	
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Rfam database���
http://www.sanger.ac.uk/Software/Rfam/���

(Release 7.0, 3/2005)	



503 ncRNA families!

8 riboswitches, 235 small nucleolar RNAs, 
8 spliceosomal RNAs, 10 bacterial 
antisense RNAs, 46 microRNAs, 9 
ribozymes, 122 cis RNA regulatory 
elements, …!

280,000 annotated ncRNAs!
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IRE (partial seed alignment):	



Hom.sap.  GUUCCUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCUUC.UUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCCUGUUUCAACAGUGCUUGGA.GGAAC 

Hom.sap.  UUUAUC..AGUGACAGAGUUCACU.AUAAA 
Hom.sap.  UCUCUUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  AUUAUC..GGGAACAGUGUUUCCC.AUAAU 
Hom.sap.  UCUUGC..UUCAACAGUGUUUGGACGGAAG 
Hom.sap.  UGUAUC..GGAGACAGUGAUCUCC.AUAUG 
Hom.sap.  AUUAUC..GGAAGCAGUGCCUUCC.AUAAU 

Cav.por.  UCUCCUGCUUCAACAGUGCUUGGACGGAGC 
Mus.mus.  UAUAUC..GGAGACAGUGAUCUCC.AUAUG 
Mus.mus.  UUUCCUGCUUCAACAGUGCUUGAACGGAAC 
Mus.mus.  GUACUUGCUUCAACAGUGUUUGAACGGAAC 
Rat.nor.  UAUAUC..GGAGACAGUGACCUCC.AUAUG 
Rat.nor.  UAUCUUGCUUCAACAGUGUUUGGACGGAAC 

SS_cons   <<<<<...<<<<<......>>>>>.>>>>> 

Example Rfam Family	



Input (hand-curated):	


MSA “seed alignment”	


SS_cons	



Score Thresh T	


Window Len W	



Output:	


CM	



scan results & “full 
alignment”	
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Rfam – key issues	

	



Overly narrow families	



Variant structures/unstructured RNAs	


Spliced RNAs	


RNA pseudogenes	



Human ALU is SRP related w/ 1.1m copies	


Mouse B2 repeat (350k copies) tRNA related	



Speed & sensitivity	


Motif discovery	
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Day 2���
5 slide synopsis of last lecture	



Covariance Models (CMs) represent 
conserved RNA sequence/structure motifs	



They allow accurate search	


But 	


	

a) search is slow	


	

b) model construction is laborious	
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A: Sequence + structure	



B: the CM “guide tree”	



C: probabilities of 
letters/ pairs & of indels	



Think of each branch 
being an HMM emitting 
both sides of a helix (but 
3’ side emitted in 
reverse order)	





Example: 
searching for 
tRNAs 
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€ 

Sij
y =maxπ logP(xij generated starting in state y via path π )

Sij
y =

maxz[Si+1, j−1
z + logTyz + logExi ,x j

y ] match pair
maxz[Si+1, j

z + logTyz + logExi
y ] match/insert left

maxz[Si, j−1
z + logTyz + logEx j

y ] match/insert right
maxz[Si, j

z + logTyz] delete
maxi<k≤ j[Si,k

yleft + Sk+1, j
yright ] bifurcation

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

Time O(qn3), q states, seq len n 
52 

CM Viterbi Alignment���
(the “inside” algorithm)	



Time O(qn3), q states, seq len n 
compare: O(qn) for profile HMM 



IRE (partial seed alignment):	



Hom.sap.  GUUCCUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCUUC.UUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCCUGUUUCAACAGUGCUUGGA.GGAAC 

Hom.sap.  UUUAUC..AGUGACAGAGUUCACU.AUAAA 
Hom.sap.  UCUCUUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  AUUAUC..GGGAACAGUGUUUCCC.AUAAU 
Hom.sap.  UCUUGC..UUCAACAGUGUUUGGACGGAAG 
Hom.sap.  UGUAUC..GGAGACAGUGAUCUCC.AUAUG 
Hom.sap.  AUUAUC..GGAAGCAGUGCCUUCC.AUAAU 

Cav.por.  UCUCCUGCUUCAACAGUGCUUGGACGGAGC 
Mus.mus.  UAUAUC..GGAGACAGUGAUCUCC.AUAUG 
Mus.mus.  UUUCCUGCUUCAACAGUGCUUGAACGGAAC 
Mus.mus.  GUACUUGCUUCAACAGUGUUUGAACGGAAC 
Rat.nor.  UAUAUC..GGAGACAGUGACCUCC.AUAUG 
Rat.nor.  UAUCUUGCUUCAACAGUGUUUGGACGGAAC 

SS_cons   <<<<<...<<<<<......>>>>>.>>>>> 

Example Rfam Family	



Input (hand-curated):	


MSA “seed alignment”	


SS_cons	



Score Thresh T	


Window Len W	



Output:	


CM	



scan results & “full 
alignment”	
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Today’s Goals	



Faster Search	


Infernal & RaveNnA	



Automated Model-building	


CMfinder	
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Faster Search	





Homology search	



Sequence-based	


Smith-Waterman	


FASTA	



BLAST	



Sharp decline in sensitivity at ~60-70% identity	



So, use structure, too	
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Impact of RNA homology search	



B. subtilis!

L. innocua!

A. tumefaciens!

V. cholera!

M. tuberculosis!
(and 19 more species)!

operon!
glycine 
riboswitch!

(Barrick, et al., 2004)!
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Impact of RNA homology search	



B. subtilis!

L. innocua!

A. tumefaciens!

V. cholera!

M. tuberculosis!

(Barrick, et al., 2004)!

(and 19 more species)!

operon!
glycine 
riboswitch!

(and 42 more species)!

(Mandal, et al., 2004)!

BLAST-based                  CM-based 59 



Faster Genome Annotation ���
of Non-coding RNAs ���

Without Loss of Accuracy	


Zasha Weinberg 	



& W.L. Ruzzo	



Recomb ‘04, ISMB ‘04, Bioinfo ‘06	





RaveNnA: Genome Scale ���
RNA Search	



Typically 100x speedup over raw CM, w/ no loss in accuracy: 	



	

 	

Drop structure from CM to create a (faster) HMM	


	

Use that to pre-filter sequence; 	



	

Discard parts where, provably, CM score < threshold;	


	

Actually run CM on the rest (the promising parts)	



	

Assignment of HMM transition/emission scores is key 	



	

 	

(a large convex optimization problem)	



Weinberg & Ruzzo, Bioinformatics, 2004, 2006 62 



CM’s are good, but slow ���

EMBL 

CM 

hits 
junk 

Rfam Goal 

1 month, 
1000 computers 

Our Work 

~2 months, 
1000 computers 

EMBL 

CM 

hits 

Ravenna 

Rfam Reality 

EMBL 

hits junk 

BLAST 

CM 

64 
10 years, 

1000 computers 



Covariance���
Model	



Key difference of CM vs HMM: 
Pair states emit paired symbols,  
corresponding to base-paired  
nucleotides; 16 emission 
probabilities here. 
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Oversimplified CM���
(for pedagogical purposes only)	



A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 
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CM to HMM	



A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

CM HMM 

67 25 emisions per state      5 emissions per state, 2x states 



Need: log Viterbi scores CM ≤ HMM	



Key Issue: 25 scores → 10	



P 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

L 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

R 

CM HMM 
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Viterbi/Forward Scoring	



Path π defines transitions/emissions	


Score(π) = product of “probabilities” on π	


NB: ok if “probs” aren’t, e.g. ∑≠1���
(e.g. in CM, emissions are odds ratios vs ���
0th-order background)	



For any nucleotide sequence x:	


Viterbi-score(x) = max{ score(π) | π emits x}	


Forward-score(x) = ∑{ score(π) | π emits x}	
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Key Issue: 25 scores → 10	



Need: log Viterbi scores CM ≤ HMM	


PCA ≤ LC + RA 
PCC ≤ LC + RC 
PCG ≤ LC + RG 
PCU ≤ LC + RU 
PC–  ≤ LC + R– 

… 
… 
… 
… 
… 

PAA ≤ LA + RA 
PAC ≤ LA + RC 
PAG ≤ LA + RG 
PAU ≤ LA + RU 
PA–  ≤ LA + R– N

B
: H

M
M

 n
ot

 a
 p

ro
b.

 m
od

el
 

P 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

L 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

R 

CM HMM 
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Rigorous Filtering	



Any scores satisfying the linear inequalities 
give rigorous filtering���

Proof: ���
  CM Viterbi path score    ���
    ≤ “corresponding” HMM path score���
    ≤  Viterbi HMM path score ���
              (even if it does not correspond to any CM path)	



PAA ≤ LA + RA 
PAC ≤ LA + RC 
PAG ≤ LA + RG 
PAU ≤ LA + RU 
PA–  ≤ LA + R– … 
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Some scores filter better	



PUA = 1  ≤  LU + RA	


PUG = 4  ≤  LU + RG	



	

 	

 	

 	

 	

 	

    Assuming ACGU ≈ 25%	


Option 1: 	

 	

 	

 	

Opt 1:	


    LU = RA = RG = 2 	

 	

   LU + (RA + RG)/2 = 4 	



Option 2: 	

 	

 	

 	

Opt 2:	


    LU = 0, RA = 1, RG = 4 	

   LU + (RA + RG)/2 = 2.5	
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Optimizing filtering	



For any nucleotide sequence x:	


Viterbi-score(x) = max{ score(π) | π emits x }	


Forward-score(x) = ∑{ score(π) | π emits x }	



Expected Forward Score	


E(Li, Ri) = ∑all sequences x Forward-score(x)*Pr(x)	


NB: E is a function of Li, Ri only	



Optimization: ���
Minimize E(Li, Ri)  subject to score Lin.Ineq.s	


This is heuristic (“forward↓ ⇒ Viterbi↓ ⇒ filter↓”)	


But still rigorous because “subject to score Lin.Ineq.s”	



Under 0th-order  
background model 
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Calculating E(Li, Ri)	



E(Li, Ri) = ∑x Forward-score(x)*Pr(x)	



Forward-like: for every state, calculate 
expected score for all paths ending there; 
easily calculated from expected scores of 
predecessors & transition/emission 
probabilities/scores	
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Minimizing E(Li, Ri)	



Calculate E(Li, Ri) 
symbolically, in terms of 
emission scores, so we 
can do partial derivatives 
for numerical convex 
optimization algorithm	



€ 

∂E (L1 , L2 , ...)
∂Li

Forward: 

Viterbi: 
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Assignment of probabilities	



Convex optimization problem	


Constraints: enforce rigorous property	



Objective function: filter as aggressively as 
possible	



Problem sizes: 	


1000-10000 variables	


10000-100000 inequality constraints	





“Convex” Optimization	



Convex: ���
local max = global max;	



simple “hill climbing” works	



Nonconvex: ���
can be many local maxima,    
≪ global max;���
“hill-climbing” fails	
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Estimated Filtering Efficiency���
(139 Rfam 4.0 families)	



Filtering 
fraction	



# families 
(compact)	



# families 
(expanded)	



< 10-4	

 105	

 110	



10-4 - 10-2	

 8	

 17	



.01 - .10	

 11	

 3	



.10 - .25	

 2	

 2	



.25 - .99	

 6	

 4	



.99 - 1.0	

 7	

 3	



~100x 
speedup 

Averages 283 times faster than CM!

≈ 
br

ea
k 

ev
en
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Results: new ncRNAs (?)	



Name	

 # Known	



(BLAST + CM)	



# New	



(rigorous filter + CM)	


Pyrococcus snoRNA	

 57	

 123	



Iron response element	

 201	

 121	



Histone 3’ element	

 1004	

 102*	



Retron msr	

 11	

 48	



Hammerhead I	

 167	

 26	



Hammerhead III	

 251	

 13	



U6 snRNA	

 1462	

 2	



U7 snRNA	

 312	

 1	



cobalamin riboswitch  	

 170	

 7	



13 other families	

 5-1107	

 0	





Results: With additional work	


# with 
BLAST+CM	



# with rigorous 
filter series + CM	



# new	



Rfam tRNA	

 58609	

 63767	

 5158	



Group II intron	

 5708	

 6039	

 331	



tRNAscan-SE 
(human)	



608	

 729	

 121	



tmRNA	

 226	

 247	

 21	



Lysine riboswitch	

 60	

 71	

 11	



And more…	
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“Additional work”	



Profile HMM filters use no 2ary structure info	


They work well because, tho structure can be critical to 
function, there is (usually) enough primary sequence 
conservation to exclude most of DB	


But not on all families (and may get worse?)	



Can we exploit some structure (quickly)? 	


Idea 1: “sub-CM”	


Idea 2: extra HMM states remember mate	


Idea 3: try lots of combinations of “some hairpins”	


Idea 4: chain together several filters (select via Dijkstra)	



for some  
hairpins } 
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Sub-CM filters	



Full CM!

Profile HMM! ACUCCCAGAAGAGUUA!

Sub-CM!
A! AAGAGUUA!A sub-CM!

Sub-profile-HMM!

A! A!
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Store-pair filters	



ACUCCCAGAAGAGUUA!

Full CM!

Store pair!

“Profile” HMM: 

A! A!
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ACCGAT!
GGACA!

Rigorous filter!

ncRNAs!
CM!

Rigorous filter!

Rigorous filter!

Filter Chains 
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Why run filters in series?	


Filtering fraction! Run time (sec/Kbase)!

Filter 1! 0.25! 1!
Filter 2! 0.01! 10!
CM! N/A! 200!

CM alone: 	

200 s/Kb	


Filter 1  CM: 	

 1 + 0.25*200 = 51 s/Kb	


Filter 2  CM: 	

10 + 0.01*200 = 12 s/Kb	



Filter 1  Filter 2  CM: ���
	

1 + 0.25*10 + 0.01*200 = 5.5 s/Kb	
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Store pair!

Filtering fraction!

0
0.5
1

1.5
2

2.5

1E-06 0.0001 0.01 1

Sub-CM!

0
0.5
1

1.5
2

2.5

1E-06 0.0001 0.01 1

Properties of a filter:!
•  Filtering fraction!
•  Run time (sec/Kb)!

R
un

 ti
m

e 
(s

ec
/K

b)
!

89 



0
0.5
1

1.5
2

2.5

1E-06 0.0001 0.01 1

Store pair! Sub-CM!

0
0.5
1

1.5
2

2.5

1E-06 0.0001 0.01 1

Simplified performance model (selectivity & speed)	


Independence assumptions for base pairs	



Use dynamic programming to rapidly explore base 
pair combinations 	



Filtering fraction!

R
un

 ti
m

e 
(s

ec
/K

b)
!
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0
0.5
1

1.5
2

2.5

1E-06 0.0001 0.01 1
0

0.5
1

1.5
2

2.5

1E-06 0.0001 0.01 1

Store pair! Sub-CM!

Selected  
rigorous  

filter chain!

R
un

 ti
m

e 
(s

ec
/K

b)
!

0
0.5
1

1.5
2

2.5

1E-06 0.0001 0.01 1

Filtering fraction!
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10
00
× 

fa
st

er
!

Rigorous series of filters + CM time (days)!

Results: faster	



0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

0 20 40 60 80 100

10× faster!

Es
tim

at
ed

 C
M

 ti
m

e 
(d

ay
s)
! CM: 30 years 

(your career) 
Filters: 1 month 
(time between 
school terms)!
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Results: more sensitive than BLAST	


# with 
BLAST+CM!

# with rigorous 
filters + CM!

# new!

Rfam tRNA! 58609! 63767! 5158!
Group II intron! 5708! 6039! 331!
Iron response 
element!

201! 322! 121!

tmRNA! 226! 247! 21!
Lysine riboswitch! 60! 71! 11!

And more…!
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Is there anything more to do?	



Rigorous filters can be too cautious	


E.g., 10 times slower than heuristic filters	


Yet only 1-3% more sensitive	



We want to	


Run scans faster with minimal loss of sensitivity	



Know empirically what sensitivity we’re losing	
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Heuristic Filters	



Rigorous filters optimized for worst case	


Possible to trade improved speed for small 
loss in sensitivity?	


Yes – profile HMMs as before, but optimized 
for average case	


“ML heuristic”: train HMM from the infinite 
alignment generated by the CM	


Often 10x faster, modest loss in sensitivity	
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Heuristic Filters���
ROC-like curves ���

(lysine riboswitch)	



 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-08  1e-06  0.0001  0.01  1

Filtering fraction!

Fi
lte

r s
en

si
tiv

ity
! HMM!

BLAST!
Filter 
sends!
80% of!
hits to 
CM!
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Heuristic Filters	



cobalamine  
(B12) riboswitch tRNA SECIS 

* * 

* 

* rigorous HMM, not rigorous threshold 
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Heuristic Profile HMMs	



CM! CAG 
AAU 
CAG 
AAU 

<.> 
…
!

CAG 
AAU 
CAG 
AAU 

... 

…
!

Profile 
HMM!

CAG 
AAU 
<.> 

Input 
Multiple 
Sequence 
Alignment!

Infinite Multiple 
sequence 
alignments!

Base paired  
columns!

(Weinberg & Ruzzo, 2006)!
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Software	



Ravenna implements both rigorous and 
heuristic filters	



Infernal (engine behind Rfam, for example)
implements heuristic filters and some other 
accelerations	



E,g., dynamic “banding” of dynamic programming 
matrix based on the insight that large deviations 
from consensus length must have low scores.	
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CM Search Summary	



Still slower than we might like, but dramatic 
speedup over raw CM is possible with:	



No loss in sensitivity (provably), or	


Even faster with modest (and estimable) loss in 
sensitivity	
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Day 3	



Our Plot So Far:	


Covariance Models (CMs) represent conserved RNA 
sequence/structure motifs	



They allow accurate search	


Basic search is slow, but substantial speedup possible	



Today: 	


Automated model construction & ncRNA discovery in 
prokaryotes	
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Motif Discovery	





RNA Motif Discovery	



CM’s are great, but where do they come from?	


An approach: comparative genomics	



Search for motifs with common secondary structure in a 
set of functionally related sequences.	



Challenges	


Three related tasks	



Locate the motif regions.	


Align the motif instances.	


Predict the consensus secondary structure.	



Motif search space is huge!	


Motif location space, alignment space, structure space.	
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RNA Motif Discovery	



Typical problem: given a 10-20 unaligned 
sequences of 1-10kb, most of which contain 
instances of one RNA motif of 100-200bp  
-- find it.	



Example: 5’ UTRs of orthologous glycine 
cleavage genes from γ-proteobacteria	



Example: corresponding introns of 
orthogolous vertebrate genes	
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Approaches	



Align-First: Align sequences, then look for 
common structure	



Fold-First: Predict structures, then try to align 
them	


Joint: Do both together	
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“Align First” Approach: ���
Predict Struct from Multiple Alignment	



… GA … UC …	


… GA … UC …	


… GA … UC …	



… CA … UG …	


… CC … GG …	


… UA … UA …	



Compensatory 
mutations reveal 
structure (core of 
“comparative 
sequence analysis”) 
but usual alignment 
algorithms penalize 
them (twice)	
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Pitfall for sequence-alignment- 
first approach	



Structural conservation ≠ Sequence conservation	


Alignment without structure information is unreliable	



CLUSTALW alignment of SECIS elements with flanking regions 

same-colored boxes should be aligned 
112 



Pfold (KH03)  Test Set D 

Trusted alignment 

ClustalW       
    Alignment 

Evolutionary Distance 
Knudsen & Hein, Pfold: RNA secondary structure prediction using stochastic 
context-free grammars, Nucleic Acids Research, 2003, v 31,3423–3428 
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Approaches	



Align-first: align sequences, then look for 
common structure	


Fold-first: Predict structures, then try to align 
them	



single-seq struct prediction only ~ 60% accurate; 
exacerbated by flanking seq; no biologically-
validated model for structural alignment	



Joint: Do both together	


Sankoff – good but slow	


Heuristic	
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Our Approach: CMfinder���
RNA motifs from unaligned sequences	



Simultaneous local alignment, folding and CM-based 
motif description via an EM-style learning procedure	



Sequence conservation exploited, but not required	



Robust to inclusion of unrelated and/or flanking sequence	


Reasonably fast and scalable	



Produces a probabilistic model of the motif that can be 
directly used for homolog search	



Yao, Weinberg & Ruzzo, Bioinformatics, 2006 
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Alignment → CM → Alignment	



Similar to HMM, but slower	



Builds on Eddy & Durbin, ‘94	



But new way to infer which columns to pair, 
via a principled combination of mutual 
information and predicted folding energy	



And, it’s local, not global, alignment (harder)	
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CMFinder	


Simultaneous alignment, folding & motif description ���

Yao, Weinberg & Ruzzo, Bioinformatics, 2006	



Folding  
predictions 

Smart  
heuristics 

Candidate 
alignment CM 

Realign 

EM 

Mutual 
Information 

Combines folding & mutual 
information in a principled way. 



Initial Alignment Heuristics	



fold sequences separately	


candidates: regions with low folding energy	


compare candidates via “tree edit” algorithm	



find best “central” candidates & align to them	


BLAST anchors	
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Structure Inference	



Part of M-step is to pick a structure that maximizes 
data likelihood	



We combine:	


mutual information	


position-specific priors for paired/unpaired���
    (based on single sequence thermodynamic folding predictions)	


intuition: for similar seqs, little MI; fall back on single-
sequence folding predictions	



data-dependent, so not strictly Bayesian  	
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Li = column i; σ = (α, β) the 2ary struct, α = unpaired, β = paired cols 

With MLE params, Iij is the mutual information between cols i and j 
129 



Can find it via a simple dynamic programming alg. 130 
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CMfinder Accuracy���
(on Rfam families with flanking sequence)	



/CW 
/CW 



Summary of Rfam test 
families and results 
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Applications: ���
ncRNA discovery in ���

prokaryotes and vertebrates���

Key issue in both cases is���
 exploiting prior knowledge ���
to focus on promising data	





Application I���

A Computational Pipeline for High Throughput Discovery of 
cis-Regulatory Noncoding RNA in Prokaryotes.  

Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo.  
PLoS Computational Biology. 3(7): e126, July 6, 2007.  



Predicting New cis-Regulatory RNA 
Elements	



Goal: 	


Given unaligned UTRs of coexpressed or orthologous 
genes, find common structural motifs	



Difficulties: 	


Low sequence similarity: alignment difficult	


Varying flanking sequence 	



Motif missing from some input genes	
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Use the Right Data;���
Do Genome Scale Search	



Dataset 
collection Footprinter CMfinder Ravenna 

Search 
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Right Data: Why/How	



We can recognize, say, 5-10 good examples amidst 
20 extraneous ones (but not 5 in 200 or 2000) of 
length 1k or 10k (but not 100k)	


Regulators often near regulatees (protein coding 
genes), which are usually recognizable cross-species	


So, find similar genes (“homologs”), look at adjacent 
DNA 	


(Not strategy used in vertebrates - 1000x larger genomes)	
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Genome Scale Search: Why	



Many riboswitches, e.g., are present in ~5 copies 
per genome	


In most close relatives 	



More examples give better model, hence even more 
examples, fewer errors 	


More examples give more clues to function - critical 
for wet lab verification	



But inclusion of non-examples can degrade motif…	





Approach	



Get bacterial genomes	



For each gene, get 10-30 close orthologs (CDD)	


Find most promising genes, based on conserved 

sequence motifs (Footprinter)	



From those, find structural motifs (CMfinder)	


Genome-wide search for more instances 
	

(Ravenna)	



Expert analyses (Breaker Lab, Yale)	
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Footprinter finds patterns of 
conservation	



1B_SUBTILIS 

Upstream of folC 
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Chloroflexus aurantiacus 

Geobacter metallireducens 
Geobacter sulphurreducens 

Chloroflexi 

δ -Proteobacteria 

Symbiobacterium thermophilum             

CMfinder: 9 instances 
Found by Scan: 447 hits 
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Processing 
Times	



Input from ~70 
complete Firmicute 
genomes available in 
late 2005-early 2006, 
totaling ~200 
megabases	
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2946 CDD groups 

35975  motifs 

1740 motifs 

1466 motifs 

Retrieve upstream sequences 

Motif postprocessing 

Identify CDD group members < 10 CPU days 

Motif postprocessing 

Footprinter ranking < 10 CPU days 

 1 ~ 2 CPU months CMfinder 

RaveNnA  10 CPU months 

CMfinder refinement   < 1 CPU month 



Rank Score # CDD Rfam 
RAV CMF FP   RAV  CMF ID Gene  Descriptio n   

0 43 107 3400 367 11 9904 IlvB Thiamine pyrophosphate-requiring enzymes RF00230 T-box 

1 10 344 3115 96 22 13174 COG3859 Predicted membrane protein RF00059 THI 

2 77 1284 2376 112 6 11125 MetH Methionine synthase I specific DNA methylase RF00162 S_box 

3 0 5 2327 30 26 9991 COG0116 Predicted N6-adenine-specific DNA methylase RF00011 
RNaseP_bact_b 

4 6 66 2228 49 18 4383 DHBP  3,4-dihydroxy-2-butanone 4-phosphate synthase RF00050 RFN 

7 145 952 1429 51 7 10390 GuaA GMP synthase RF00167 Purine 

8 17 108 1322 29 13 10732 GcvP Glycine cleavage system protein P RF00504 Glycine 

9 37 749 1235 28 7 24631 DUF149 Uncharacterised BCR, YbaB family COG0718 RF00169 SRP_bact 

10 123 1358 1222 36 6 10986 CbiB Cobalamin biosynthesis protein CobD/CbiB  RF00174 Cobalamin 

20 137 1133 899 32 7 9895 LysA Diaminopimelate decarboxylase RF00168 Lysine 

21 36 141 896 22 10 10727 TerC Membrane protein TerC RF00080 yybP-ykoY 

39 202 684 664 25 5 11945 MgtE Mg/Co/Ni transporter MgtE RF00380 ykoK 

40 26 74 645 19 18 10323 GlmS Glucosamine 6-phosphate synthetase RF00234 glmS 

53 208 192 561 21 5 10892 OpuBB ABC-type proline/glycine betaine transport 
systems  

RF00005 tRNA1 

122 99 239 413 10 7 11784 EmrE Membrane transporters of cations and cationic 
drug 

RF00442 ykkC-yxkD 

255 392 281 268 8 6 10272 COG0398 Uncharacterized conserved protein RF00023 tmRNA 

 
Table 1: Motifs that correspond to Rfam families.  “Rank”: the three columns show ranks for refined motif clusters after genome scans (“RAV”), 
CMfinder motifs before genome scans (“CMF”), and FootPrinter results (“FP”).  We used the same ranking scheme for RAV and CMF.  “Score”: 

Table 1: Motifs that correspond to Rfam families	
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Rfam Membership Overlap Structure 
    # Sn Sp nt Sn Sp bp Sn Sp 
RF00174 Cobalamin 183 0.741 0.97 152 0.75 0.85 20 0.60 0.77 
RF00504 Glycine 92 0.561 0.96 94 0.94 0.68 17 0.84 0.82 
RF00234 glmS 34 0.92 1.00 100 0.54 1.00 27 0.96 0.97 
RF00168 Lysine 80 0.82 0.98 111 0.61 0.68 26 0.76 0.87 
RF00167 Purine 86 0.86 0.93 83 0.83 0.55 17 0.90 0.95 
RF00050 RFN 133 0.98 0.99 139 0.96 1.00 12 0.66 0.65 
RF00011 RNaseP_bact_b 144 0.99 0.99 194 0.53 1.00 38 0.72 0.78 
RF00162 S_box 208 0.95 0.97 110 1.00 0.69 23 0.91 0.78 
RF00169 SRP_bact 177 0.92 0.95 99 1.00 0.65 25 0.89 0.81 
RF00230 T-box 453 0.96 0.61 187 0.77 1.00 5 0.32 0.38 
RF00059 THI 326 0.89 1.00 99 0.91 0.69 13 0.56 0.74 
RF00442 ykkC-yxkD 19 0.90 0.53 99 0.94 0.81 18 0.94 0.68 
RF00380 ykoK 49 0.92 1.00 125 0.75 1.00 27 0.80 0.95 
RF00080 yybP-ykoY 41 0.32 0.89 100 0.78 0.90 18 0.63 0.66 
mean   145 0.84 0.91 121 0.81 0.82 21 0.75 0.77 
median   113 0.91 0.97 105 0.81 0.83 19 0.78 0.78 

 
Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments.  
Membership: # of seqs in overlap between our predictions and Rfam’s, the sensitivity (Sn) and 
specificity (Sp) of our membership predictions.  Overlap: the avg len of overlap between our 
predictions and Rfam’s (nt), the fractional lengths of the overlapped region in Rfam’s 
predictions (Sn) and in ours (Sp).  Structure: the avg # of correctly predicted canonical base 
pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of 
our predictions.  1After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin increased to 
76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%. 
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Rank # CDD Gene: Description Annotation 
6 69 28178 DHOase IIa: Dihydroorotase PyrR attenuator [22] 

15 33 10097 RplL: Ribosomal protein L7/L1  L10 r-protein leader; see Supp 
19 36 10234 RpsF: Ribosomal protein S6 S6 r-protein leader 
22 32 10897 COG1179: Dinucleotide-utilizing enzymes  6S RNA [25] 
27 27 9926 RpsJ: Ribosomal protein S10 S10 r-protein leader; see Supp 
29 11 15150 Resolvase: N terminal domain   
31 31 10164 InfC: Translation initiation factor 3 IF-3 r-protein leader; see Supp 
41 26 10393 RpsD: Ribosomal protein S4 and related proteins  S4 r-protein leader; see Supp [30]  
44 30 10332 GroL: Chaperonin GroEL HrcA DNA binding site [46] 
46 33 25629 Ribosomal L21p: Ribosomal prokaryotic L21 protein  L21 r-protein leader; see Supp 
50 11 5638 Cad: Cadmium resistance transporter [47] 
51 19 9965 RplB: Ribosomal protein L2 S10 r-protein leader 
55 7 26270 RNA pol Rpb2 1: RNA polymerase beta subunit  
69 9 13148 COG3830: ACT domain-containing protein  
72 28 4174 Ribosomal S2: Ribosomal protein S2  S2 r-protein leader 
74 9 9924 RpsG: Ribosomal protein S7 S12 r-protein leader 
86 6 12328 COG2984: ABC-type uncharacterized transport system   
88 19 24072 CtsR: Firmicutes transcriptional repressor of class III CtsR DNA binding site [48] 

100 21 23019 Formyl trans N: Formyl transferase   
103 8 9916 PurE: Phosphoribosylcarboxyaminoimidazole   
117 5 13411 COG4129: Predicted membrane protein   
120 10 10075 RplO: Ribosomal protein L15  L15 r-protein leader 
121 9 10132 RpmJ: Ribosomal protein L36 IF-1 r-protein leader 
129 4 23962 Cna B: Cna protein B-type domain   
130 9 25424 Ribosomal S12: Ribosomal protein S12 S12 r-protein leader 
131 9 16769 Ribosomal L4: Ribosomal protein L4/L1 family  L3 r-protein leader 
136 7 10610 COG0742: N6-adenine-specific methylase  ylbH putative RNA motif [4] 
140 12 8892 Pencillinase R: Penicillinase repressor BlaI, MecI DNA binding site [49] 
157 25 24415 Ribosomal S9: Ribosomal protein S9/S16 L13 r-protein leader; Fig 3 
160 27 1790 Ribosomal L19: Ribosomal protein L19  L19 r-protein leader; Fig 2 
164 6 9932 GapA: Glyceraldehyde-3-phosphate dehydrogenase/erythrose   
174 8 13849 COG4708: Predicted membrane protein   
176 7 10199 COG0325: Predicted enzyme with a TIM-barrel fold   
182 9 10207 RpmF: Ribosomal protein L32 L32 r-protein leader 
187 11 27850 LDH: L-lactate dehydrogenases   
190 11 10094 CspR: Predicted rRNA methylase   
194 9 10353 FusA: Translation elongation factors EF-G r-protein leader 
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mRNA leader                

mRNA leader switch?              



Estimating Motif Significance	
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Red: top 100 motifs.  
Black: 50 permutations of 

ClustalW alignment of 
each of those input sets 

This likely underestimates 
significance, but nevertheless 
all real motifs have p <.01, and 
73/100 better than all perms  
of their own input set 



Application II	



Identification of 22 candidate structured 
RNAs in bacteria using the CMfinder 

comparative genomics pipeline.  

Weinberg, Barrick, Yao, Roth, Kim, Gore, Wang, Lee, 
Block, Sudarsan, Neph, Tompa, Ruzzo and Breaker.  

Nucl. Acids Res., July 2007 35: 4809-4819.	
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Weinberg, et al. Nucl. Acids Res., July 2007 35: 4809-4819.!

boxed = 
confirmed 
riboswitch 
(+2 more) 



New Riboswitches���
(all lab-verified)	



SAM – IV 	

(S-adenosyl methionine)	


SAH 	

(S-adenosyl homocystein)	


MOCO 	

(Molybdenum Cofactor)	



PreQ1 – II 	

(queuosine precursor)	


GEMM 	

(cyclic di-GMP)	
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GEMM regulated genes	



Pili and flagella	



Secretion  	


Chemotaxis 	


Signal transduction 	



GEMM senses a “second messenger” 
molecule (cyclic di-GMP) produced for signal 
transduction or for cell-cell communication.  

Chitin	



Membrane Peptide 	


Other - tfoX, cytochrome c	
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Motif RNA? Cis? Switch? Phylum/class M,V Cov. # Non cis 
GEMM Y Y y Widespread V 21 322 12/309 
Moco Y Y Y Widespread M,V 15 105 3/81 
SAH Y Y Y Proteobacteria M,V 22 42 0/41 
SAM-IV Y Y Y Actinobacteria V 28 54 2/54 
COG4708 Y Y y Firmicutes M,V 8 23 0/23 
sucA  Y Y y -proteobacteria  9 40 0/40 
23S-methyl Y Y n Firmicutes  12 38 1/37 
hemB  Y ? ? -proteobacteria V 12 50 2/50 
(anti-hemB)  (n) (n)    (37) (31/37) 
MAEB ? Y n -proteobacteria  3 662 15/646 
mini-ykkC Y Y ? Widespread V 17 208 1/205 
purD  y Y ? -proteobacteria M 16 21 0/20 
6C y ? n Actinobacteria  21 27 1/27 
alpha-
transposases 

? N N -proteobacteria  16 102 39/99 

excisionase ? ? n Actinobacteria  7 27 0/27 
ATPC y ? ? Cyanobacteria  11 29 0/23 
cyano-30S Y Y n Cyanobacteria  7 26 0/23 
lacto-1 ? ? n Firmicutes  10 97 18/95 
lacto-2 y N n Firmicutes  14 357 67/355 
TD-1 y ? n Spirochaetes M,V 25 29 2/29 
TD-2 y N n Spirochaetes V 11 36 17/36 
coccus-1 ? N N Firmicutes  6 246 112/189 
gamma-150 ? N N -proteobacteria  9 27 6/27 
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LETTERS

Exceptional structured noncoding RNAs revealed by
bacterial metagenome analysis
Zasha Weinberg1,2, Jonathan Perreault2, Michelle M. Meyer2 & Ronald R. Breaker1,2,3

Estimates of the total number of bacterial species1–3 indicate that
existing DNA sequence databases carry only a tiny fraction of the
total amount of DNA sequence space represented by this division of
life. Indeed, environmentalDNAsamples havebeen shown to encode
many previously unknown classes of proteins4 and RNAs5.
Bioinformatics searches6–10 of genomic DNA from bacteria com-
monly identify new noncoding RNAs (ncRNAs)10–12 such as ribo-
switches13,14. In rare instances, RNAs that exhibit more extensive
sequence and structural conservation across a wide range of bacteria
are encountered15,16. Given that large structured RNAs are known to
carry out complex biochemical functions such as protein synthesis
and RNA processing reactions, identifying more RNAs of great size
and intricate structure is likely to reveal additional biochemical func-
tions that can be achieved by RNA.We applied an updated computa-
tional pipeline17 to discover ncRNAs that rival the known large
ribozymes in size and structural complexity or that are among the
most abundant RNAs in bacteria that encode them. These RNAs
would have been difficult or impossible to detect without examining
environmentalDNAsequences, indicating thatnumerousRNAswith
extraordinary size, structural complexity, or other exceptional char-
acteristics remain to be discovered in unexplored sequence space.

Conserved secondary structures of RNAs can be identified by
phylogenetic comparative sequence analysis18,19, whereby nucleotides
and structures important for RNA function are revealed by iden-
tification of conserved sequences and nucleotide covariation (for
example, see Supplementary Fig. 1). We used this approach to
identify over 75 new structured RNAs from bacteria or archaea.
Among these are new riboswitch classes that sense tetrahydrofolate,
S-adenosylhomocysteine and S-adenosylmethionine, and c-di-GMP,
and other candidate cis-regulatory and ncRNAs (unpublished data).
On the basis of available sequence data, several of these RNAs are
present only in specific environments or in phyla with few available
genome sequences (Supplementary Table 1). Here we report a special
subset of new-found RNA structures that are exceptional, either
because they are extremely large and structurally complex or because
they are produced in unusually high amounts.

We identified two RNA structures (GOLLD and HEARO) that
are among the largest complex bacterial ncRNAs known (Fig. 1).
GOLLD (Giant, Ornate, Lake- and Lactobacillales-Derived) RNA is
particularly striking because it represents the third-largest highly
structured bacterial RNA discovered to date, ranking only behind
23S and 16S rRNAs. The structural complexity of GOLLD RNA
(Fig. 2a), as quantified by the number of multistem junctions and
pseudoknots, is similar to most self-splicing group II introns20.
Also, as observed in large ribozymes18–20, some regions of GOLLD
RNA can adopt a diversity of complex folds (Supplementary Fig. 2).

We identified GOLLD RNAs by searching environmental
sequences collected from Lake Gatún, Panama21, and representatives

were subsequently identified in eight cultivated organisms distribu-
ted among three bacterial phyla. GOLLDRNAs are frequently located
adjacent to tRNAs, and in three cases, a tRNA is predicted inside a
variable region in GOLLD RNA itself (Fig. 2a and Supplementary
Discussion).

In Lactobacillus brevis ATCC 367 and other organisms, GOLLD
RNA resides in an apparent prophage. We therefore monitored
GOLLD RNA transcription in L. brevis cultures grown with mitomy-
cin C, an antibiotic that commonly induces prophages to lyse their
hosts22. Increased GOLLD RNA expression correlates with bacterio-
phage particle production, and DNA corresponding to the GOLLD
RNA gene is packaged into phage particles (Fig. 2b). Furthermore,
most L. brevis GOLLD RNA transcripts made during bacteriophage
production closely bracket the entire span of conserved sequences
and structural elements as determined by mapping of the 59 and 39
termini (Supplementary Fig. 3). Thus, expression of the entire non-
coding RNA presumably is important for the bacteriophage lytic
process.

HEARO (HNH Endonuclease-Associated RNA and ORF) RNAs
(Fig. 3a) often carry an embedded ORF that usually is predicted to
code for an HNH endonuclease. This enzyme is commonly exploited
by a variety of mobile genetic elements to achieve DNA transposi-
tion23. Thus HEARO RNA and its associated ORF together might
constitute a mobile genetic element. The number of HEARO RNAs
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and intricate structure is likely to reveal additional biochemical func-
tions that can be achieved by RNA.We applied an updated computa-
tional pipeline17 to discover ncRNAs that rival the known large
ribozymes in size and structural complexity or that are among the
most abundant RNAs in bacteria that encode them. These RNAs
would have been difficult or impossible to detect without examining
environmentalDNAsequences, indicating thatnumerousRNAswith
extraordinary size, structural complexity, or other exceptional char-
acteristics remain to be discovered in unexplored sequence space.

Conserved secondary structures of RNAs can be identified by
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and structures important for RNA function are revealed by iden-
tification of conserved sequences and nucleotide covariation (for
example, see Supplementary Fig. 1). We used this approach to
identify over 75 new structured RNAs from bacteria or archaea.
Among these are new riboswitch classes that sense tetrahydrofolate,
S-adenosylhomocysteine and S-adenosylmethionine, and c-di-GMP,
and other candidate cis-regulatory and ncRNAs (unpublished data).
On the basis of available sequence data, several of these RNAs are
present only in specific environments or in phyla with few available
genome sequences (Supplementary Table 1). Here we report a special
subset of new-found RNA structures that are exceptional, either
because they are extremely large and structurally complex or because
they are produced in unusually high amounts.

We identified two RNA structures (GOLLD and HEARO) that
are among the largest complex bacterial ncRNAs known (Fig. 1).
GOLLD (Giant, Ornate, Lake- and Lactobacillales-Derived) RNA is
particularly striking because it represents the third-largest highly
structured bacterial RNA discovered to date, ranking only behind
23S and 16S rRNAs. The structural complexity of GOLLD RNA
(Fig. 2a), as quantified by the number of multistem junctions and
pseudoknots, is similar to most self-splicing group II introns20.
Also, as observed in large ribozymes18–20, some regions of GOLLD
RNA can adopt a diversity of complex folds (Supplementary Fig. 2).

We identified GOLLD RNAs by searching environmental
sequences collected from Lake Gatún, Panama21, and representatives

were subsequently identified in eight cultivated organisms distribu-
ted among three bacterial phyla. GOLLDRNAs are frequently located
adjacent to tRNAs, and in three cases, a tRNA is predicted inside a
variable region in GOLLD RNA itself (Fig. 2a and Supplementary
Discussion).

In Lactobacillus brevis ATCC 367 and other organisms, GOLLD
RNA resides in an apparent prophage. We therefore monitored
GOLLD RNA transcription in L. brevis cultures grown with mitomy-
cin C, an antibiotic that commonly induces prophages to lyse their
hosts22. Increased GOLLD RNA expression correlates with bacterio-
phage particle production, and DNA corresponding to the GOLLD
RNA gene is packaged into phage particles (Fig. 2b). Furthermore,
most L. brevis GOLLD RNA transcripts made during bacteriophage
production closely bracket the entire span of conserved sequences
and structural elements as determined by mapping of the 59 and 39
termini (Supplementary Fig. 3). Thus, expression of the entire non-
coding RNA presumably is important for the bacteriophage lytic
process.

HEARO (HNH Endonuclease-Associated RNA and ORF) RNAs
(Fig. 3a) often carry an embedded ORF that usually is predicted to
code for an HNH endonuclease. This enzyme is commonly exploited
by a variety of mobile genetic elements to achieve DNA transposi-
tion23. Thus HEARO RNA and its associated ORF together might
constitute a mobile genetic element. The number of HEARO RNAs
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RNAs. Notably, metatranscriptome sequences collected near Station
ALOHA5,26 (Pacific Ocean) showed that all IMES RNAs are excep-
tionally abundant (Supplementary Table 2). IMES-1 and IMES-2
RNAs are over five- and over twofold more abundant than 5S
rRNA, respectively.

Moreover, we find that IMES-1 RNA is also highly expressed in
bacteria from another marine environment, in Block Island Sound
(Atlantic Ocean), though not as abundantly as found in Station
ALOHA samples (Supplementary Fig. 10). The high amounts of
IMES-1 and IMES-2 RNAs are extremely rare for bacterial
ncRNAs25, and only 6S RNA and total tRNAs are known to outnum-
ber 5S rRNAs27. Moreover, other than SprD28 and OxyS29 RNAs, all
RNAs whose abundance is comparable to even the lower IMES-1
levels at Block Island Sound were reported by the early 1970s25,27.

Although we have identified numerous other noncoding RNAs in
our searches (for example, see Supplementary Table 1 and
Supplementary Fig. 11), examples of ncRNAs with conserved
sequence and structural complexity comparable to GOLLD and
HEARO RNAs or with expression levels comparable to IMES

RNAs are exceedingly rare. With few exceptions, these highly com-
plex or abundant RNAs were discovered decades ago. One exception,
OLE RNA16, is a complex-folded RNA recently discovered by con-
ducting similar phylogenetic comparative sequence analysis using
DNA sequence data from cultured bacteria. This RNA is found in
bacteria that can live under anaerobic conditions and that are com-
monly extremophilic. Thus GOLLD, HEARO and OLE RNAs are
members of a select group of large and complex-folded RNAs
whose mysterious functions have an impact on specialized groups
of bacteria.

Only recently has sufficient DNA sequence data from cultured
organisms been made available such that GOLLD and HEARO
RNAs can be detected in a few disparate species, and IMES RNAs
are not found at all within genome sequences derived from known
bacteria. However, among the environmental sequences used to
identify GOLLD and IMES RNAs, perhaps as much as 10 to 30
percent of bacterial cells in the relevant environment use these
RNAs (Supplementary Table 3). Given that most bacterial species
are extremely uncommon1–3, more RNAs with extraordinary char-
acteristics likely remain undiscovered in rarer bacteria. Thus,
improvements in sequencing technologies, cultivation methods,
bioinformatics and experimental approaches are poised to yield a
far greater spectrum of biochemical functions for large ncRNAs from
bacterial, archaeal and phage genomes.

METHODS SUMMARY
RNA motifs were discovered using a computational pipeline based on an early
version of a method to cluster intergenic regions by sequence similarity17. The
amounts of RNA expression in metatranscriptome data were established by the
use of covariance model searches to identify IMES RNA and 5S RNA variants.
Additional details on the sequence search and alignment methods are provided
in the Methods.
Information on oligonucleotides, bacterial cultures and RNA analyses is

detailed in the Methods. GOLLD RNA expression was established by treating
L. brevis cultures with mitomycin C (0.5mgml21) to induce bacteriophage pro-
duction. GOLLD RNA was detected by northern analysis and transcripts
mapped by 59-RNA-ligase-mediated rapid amplification of cDNA ends (RLM-
RACE) and 39-RACE. Bacteriophages were detected from supernatant by PCR.
IMES-1 RNA detection and quantification was achieved using northern analysis
of RNA samples isolated from bacteria collected by filtering ocean water.
HEARO RNA was detected in vivo using RT–PCR of total RNAs isolated from
cultured E. sibiricum cells.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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encoded by bacterial genomes varies widely. A total of 42 HEARO
RNAs are predicted in Arthrospira maxima CS-328 (Supplementary
Data), and most of these RNAs seem to represent recent duplications
(Supplementary Fig. 4). When A.maxima HEARO sequences are
aligned, it is apparent that the elements are highly conserved in
sequence, whereas their flanking sequences show no conservation
(Supplementary Fig. 5).

In some instances, homologues of the sequences flanking the con-
sensus sequence can be identified in related bacterial species wherein
the HEARO element is absent. These observations allow us to map
putative integration events (Fig. 3b, Supplementary Fig. 6), which are
consistent with a requirement for integration immediately upstream
of the sequence ATGA or GTGA. Self-splicing group I and group II
introns frequently carry ORFs coding for endonucleases, and the
combined action of the protein enzyme and ribozyme components
permit transposition with a reduced chance for genetic disruption
at the integration site23,24. The similarity in gene association be-
tween these RNAs indicates that HEARO RNAs may also process
themselves. However, self-splicing could not be demonstrated using

protein-free assays (unpublished data), and therefore HEARO may
have a different function.

We observed expression of HEARO RNA from Exiguobacterium
sibiricum (Supplementary Fig. 7), although we have not yet deter-
mined whether these RNAs undergo unusual processing in vivo.
Structural probing experiments in vitro (Supplementary Fig. 8) show
that anA.maximaHEARORNA adopts most of the secondary struc-
ture features predicted from comparative sequence analysis data.
Therefore, these RNAs may not require protein factors to form the
folded state required for their biological function, just as some large
ribozymes can form their active states without the obligate participa-
tion of proteins.

Four unusually abundant RNA structures were identified in mar-
ine environmental sequences (IMES) and designated IMES-1
through IMES-4 (Supplementary Fig. 9). The first three correspond
to several noncoding RNA classes recently identified independently5,
though our findings support different structural models (Sup-
plementary Discussion). Expression of RNAs is often quantified
relative to 5S rRNA25, which is among the most abundant of bacterial
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encoded by bacterial genomes varies widely. A total of 42 HEARO
RNAs are predicted in Arthrospira maxima CS-328 (Supplementary
Data), and most of these RNAs seem to represent recent duplications
(Supplementary Fig. 4). When A.maxima HEARO sequences are
aligned, it is apparent that the elements are highly conserved in
sequence, whereas their flanking sequences show no conservation
(Supplementary Fig. 5).

In some instances, homologues of the sequences flanking the con-
sensus sequence can be identified in related bacterial species wherein
the HEARO element is absent. These observations allow us to map
putative integration events (Fig. 3b, Supplementary Fig. 6), which are
consistent with a requirement for integration immediately upstream
of the sequence ATGA or GTGA. Self-splicing group I and group II
introns frequently carry ORFs coding for endonucleases, and the
combined action of the protein enzyme and ribozyme components
permit transposition with a reduced chance for genetic disruption
at the integration site23,24. The similarity in gene association be-
tween these RNAs indicates that HEARO RNAs may also process
themselves. However, self-splicing could not be demonstrated using

protein-free assays (unpublished data), and therefore HEARO may
have a different function.

We observed expression of HEARO RNA from Exiguobacterium
sibiricum (Supplementary Fig. 7), although we have not yet deter-
mined whether these RNAs undergo unusual processing in vivo.
Structural probing experiments in vitro (Supplementary Fig. 8) show
that anA.maximaHEARORNA adopts most of the secondary struc-
ture features predicted from comparative sequence analysis data.
Therefore, these RNAs may not require protein factors to form the
folded state required for their biological function, just as some large
ribozymes can form their active states without the obligate participa-
tion of proteins.

Four unusually abundant RNA structures were identified in mar-
ine environmental sequences (IMES) and designated IMES-1
through IMES-4 (Supplementary Fig. 9). The first three correspond
to several noncoding RNA classes recently identified independently5,
though our findings support different structural models (Sup-
plementary Discussion). Expression of RNAs is often quantified
relative to 5S rRNA25, which is among the most abundant of bacterial
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Figure 2 | GOLLD RNAs. a, Simplified consensus sequence and secondary
structure model for the most common architecture of GOLLD RNAs.
Annotated 59 and 39 ends reflect L. brevis transcripts observed by RACE

experiments (Supplementary Fig. 3). b, Phage induction and expression of
GOLLD RNA. Experimental details are presented in the Methods.
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RNAs of unusual 
abundance	



More abundant than 
5S rRNA	



From unknown marine 
organisms	



176 

     

!!

!
!
!

!
!
!
!"##$%&%'()*+,-./"*%,0, ,12'3%'3"3,3%4"%'5%3,)'6,3%52'6)*+,3(*"5("*%,&26%$3,72*,
89:!,;<=3>,"!#$%&'()*$%!)!+,$#&-*$#!&(*,&(%&-!*,)(%-,&+*&.(!*$,/&()*.,!%*$/012!3*4$,!
)((.*)*&.(%!),$!)%!#$%-,&5$#!&(!*4$!6$'$(#!*.!7&'2!8)2!
!

www.nature.com / nature 21



Day 4	



Our Plot So Far:	


Covariance Models (CMs) represent conserved RNA 
sequence/structure motifs	



They allow accurate search, moderately fast (if clever)	


Automated model construction / ncRNA discovery in 
prokaryotes, given careful choice of input data	



Today: 	


ncRNA discovery in vertebrates	
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Course Project Presentations	



Thursday, 12/17, Noon – 5:00, CSE 678	



Aim for 20-30 minute talk, plus 5-10 minutes for 
questions.	



Everyone’s invited	



178 



Vertebrate ncRNAs	



Some Results	





Rfam Entries in Bacteria	
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Species name	

 #Fams	

 #entries	

 Genome bp	



Roseiflexus sp. RS-1	

 17	

 848	

 5801598	



Thermoanaerobacter tengcongensis	

 27	

 416	

 2689445	



Clostridium difficile	

 23	

 297	

 4290252	



Bacillus thuringiensis	

 30	

 238	

 5257091	



Bacillus anthracis	

 30	

 232	

 5227293	



Shewanella putrefaciens	

 23	

 221	

 4659220	



Yersinia pestis Antiqua	

 46	

 207	

 4702289	



Escherichia coli	

 73	

 205	

 5528445	



Salmonella typhimurium 	

 85	

 203	

 4857432	





Rfam Entries in Eukaryotes	
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Species name #fams # Genome bp 
Homo sapiens  ((549 / 7892??)) 1537 8861 3603093901 
Canis lupus familiaris (dog) 1425 6418 2445110183 
Pan troglodytes (chimpanzee) 1293 6223 2747703341 
Mus musculus (mouse) 1146 5894 2654911517 
Ornithorhynchus anatinus (platypus) 169 4631 389485741 
Rattus norvegicus (Norway rat) 1071 4309 2303865484 
Arabidopsis thaliana (thale cress) 237 1255 93654490 
Caenorhabditis elegans (worm) 144 876 100267632 
Drosophila melanogaster (fruit fly) 108 493 96018145 
Schizosaccharomyces pombe (yeast) 15 131 6992687 
Plasmodium falciparum (malaria) 18 35 14214561 

Human proteins = ~ 20-25k 



# of Human hits for ���
some Rfam families	
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Family Accession 
# regions 
in human 

7SK	

 RF00100	

 1279	


SNORA7	

 RF00409	

 41	


Histone3	

 RF00032	

 618	


U1	

 RF00003	

 682	


Y_RNA	

 RF00019	

 4516	


IRE	

 RF00037	

 254	





Finding NOVEL vertebrate ncRNAs	



Natural approach : Align, Fold, Score	


UCSC Browser tracks for Evofold, RNAz	


Thousands of candidates	
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Human Predictions	



Evofold	


S Pedersen, G Bejerano, A Siepel, K 
Rosenbloom, K Lindblad-Toh, ES Lander, J Kent, 
W Miller, D Haussler, "Identification and 
classification of conserved RNA secondary 
structures in the human genome." PLoS Comput. 
Biol., 2, #4 (2006) e33. 	



48,479 candidates (~70% FDR?)	
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RNAz	


S Washietl, IL Hofacker, M Lukasser, A Hutenhofer, PF Stadler, 
"Mapping of conserved RNA secondary structures predicts 
thousands of functional noncoding RNAs in the human genome." 
Nat. Biotechnol., 23, #11 (2005) 1383-90.	



30,000 structured RNA elements 	



  1,000 conserved across all vertebrates. 	


~1/3 in introns of known genes, ~1/6 in UTRs 	


~1/2 located far from any known gene	
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Finding vertebrate ncRNAs	



Previous approaches (Evofold, RNAz) have 
found thousands of candidates, but trusted 
the vertebrate genome alignments	



Find even more if you don’t?	
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FOLDALIGN	


E Torarinsson, M Sawera, JH Havgaard, M 
Fredholm, J Gorodkin, "Thousands of 
corresponding human and mouse genomic 
regions unalignable in primary sequence contain 
common RNA structure." Genome Res., 16, #7 
(2006) 885-9.	



1800 candidates from 36970 (of 100,000) pairs	
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CMfinder	


Torarinsson, Yao, Wiklund, Bramsen, Hansen, 
Kjems, Tommerup, Ruzzo and Gorodkin. 
Comparative genomics beyond sequence based 
alignments: RNA structures in the ENCODE 
regions. Genome Research, Feb 2008, 18(2):
242-251 PMID: 18096747	



6500 candidates in ENCODE alone (better FDR, 
but still high)	
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ncRNA discovery in Vertebrates	



Natural approach : Align, Fold, Score	


Previous studies focus on highly conserved 

regions (Washietl, Pedersen et al. 2007)	



Evofold  (Pedersen et al. 2006)	



RNAz  (Washietl et al. 2005)	



We explore regions with weak ���
sequence conservation, where ���
alignments aren’t trustworthy	



Thousands of  
candidates 

Thousands 
more 
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CMfinder Search in Vertebrates	



Extract ENCODE Multiz alignments 	


Remove exons, most conserved elements.  	


56017 blocks, 8.7M bps.	



Apply CMfinder to both strands.	


10,106 predictions, 6,587 clusters. 	



High false positive rate, but still suggests 1000’s of RNAs. 	



(We’ve applied CMfinder to whole human genome: ���
  many 100’s of CPU years.   Analysis in progress.)	



Trust 17-way 
alignment for 
orthology, not for 
detailed 
alignment 
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Overlap with known transcripts	



Input regions include only one known ncRNA ���
hsa-mir-483, and we found it.	



40% intergenetic, 60% overlap with protein coding 
gene	
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Assoc w/ coding genes	



Many known human ncRNAs lie in introns	


Several of our candidates do, too, including 
some of the tested ones	


	

 #6: 	

SYN3 (Synapsin 3)	


	

	

#10: TIMP3, antisense within SYN3 intron	



	

 #9:  GRM8 (glutamate receptor metabotropic 8)	
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G+C data P N Expected Observed P-value %
0-35 igs 0.062 380 23 24.5 0.430 5.8%
35-40 igs 0.082 742 61 70.5 0.103 11.3%
40-45 igs 0.082 1216 99 129.5 0.00079 18.5%
45-50 igs 0.079 1377 109 162.5 5.16E-08 20.9%
50-100 igs 0.070 2866 200 358.5 2.70E-31 43.5%
all igs 0.075 6581 491 747.5 1.54E-33 100.0%

Overlap w/ Indel Purified Segments	



IPS presumed to signal purifying selection	


Majority (64%) of candidates have >45% G+C	


Strong P-value for their overlap w/ IPS 	
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Comparison with Evofold, RNAz	



4799 3134 

1781 

548 

44 
169 

230 

CMfinder Evofold 

RNAz 

Small overlap (w/ highly significant p-values) emphasizes complementarity	


Strong association with “Indel purified segments” - I.e., apparently under selection	


Strong association with known genes	





Alignment Matters	
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The original MULTIZ alignment without flanking regions. RNAz Score: 0.132 (no RNA)
Human GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGAGGT----CTTAACAGTATGACCAAAAACTGAAGTTCTCTATAGGATGCTGTAG-CACTCAATGGTGCTATGTTTTCCTCAGGAGA

Chimp GGACATTTCAATGCGGGCTC-ATGGGGCTGTGAAGCCAAGAGCT----ATTAACACTATGACCAAGGACTGAAATTCTCTATAGGAT-CCATAG-CACTGAATAGTGCTATATTTTCTGGAGGAAG

Cow GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAACCGGGAGCT----CTTAATGCTGTGACCAAAGATTGAAGTTCTCCATAGAATATTACGGTCACTCAAAAGTGCTATGTTTTCCTAAGGAGA

Dog GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAACCAAGGGCT----CTTAACTCTGTGACCAAATATTAGAGTTCTCCATAGGATGT-----------AATAGTGCTATGTTTTCCTGAAGAGA

Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGTGAAGTCAAGAACT----CTTAACTGTATGCCCAAAGATTAAAGTTCTCCATAAGACGCAATGCTCACTCAATAATGTTACATATTCTTGAGAAGT

Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGAGGTAGGTCTTAACAGTATAACCAAAGACTGAAGTTCTCTATAGGATGCCATAG-CACTTAATGGTGCTATGTTTTCCTCAGGAGA

Str ((((((......(((((((...(((..........)))..))))....)))......))))))............(((((.(((((....((((.((((....))))))))....))))).)))))

The local CMfinder re-alignment of the MULTIZ block. RNAz Score: 0.709 (RNA)
Human GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCA-----AGAGGTCTTAACAGTATGACCAAAAACTGAAGTTCTCTATAGGATGCTGTAG-CACTCAATGGTGCTATGTTTTCCTCAGGAGA

Chimp GGACATTTCAATGCGGGCTC-ATGGGGCTGT-GAAGCCA-----AGAGCTATTAACACTATGACCAAGGACTGAAATTCTCTATAGGAT-CCATAG-CACTGAATAGTGCTATATTTTCTGGAGGAAG

Cow GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAA-CCG-----GGAGCTCTTAATGCTGTGACCAAAGATTGAAGTTCTCCATAGAATATTACGGTCACTCAAAAGTGCTATGTTTTCCTAAGGAGA

Dog GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAA-CCA-----AGGGCTCTTAACTCTGTGACCAAATATTAGAGTTCTCCATAGGATGTAA-----------TAGTGCTATGTTTTCCTGAAGAGA

Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGT-GAAGTCA-----AGAACTCTTAACTGTATGCCCAAAGATTAAAGTTCTCCATAAGACGCAATGCTCACTCAATAATGTTACATATTCTTGAGAAGT

Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCAAGAGG-TAGGTCTTAACAGTATAACCAAAGACTGAAGTTCTCTATAGGATGCCATAG-CACTTAATGGTGCTATGTTTTCCTCAGGAGA

Str ((((((......((((((((..(((...........)))......))))))))......))))))............(((((.(((((....((((.((((....))))))))....))))).)))))



Realignment	



Average pairwise sequence similarity 

%
 re

al
ig

ne
d 
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10 of 11 top (differentially) expressed	





Summary	



Lots of structurally conserved ncRNA	


Functional significance often unclear	


But high rate of confirmed tissue-specific expression in 

(small) set of top candidates in humans	


BIG CPU demands…	


Still need for further methods development & 

application	
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Summary	



ncRNA is a “hot” topic	



For family homology modeling: CMs	


Training & search like HMM (but slower)	


Dramatic acceleration possible	



Automated model construction possible 	


New computational methods yield new discoveries	


Many open problems	
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Course Wrap Up	





“High-Throughput ���
BioTech”	



Sensors	


DNA sequencing	


Microarrays/Gene expression	


Mass Spectrometry/Proteomics	


Protein/protein & DNA/protein interaction	



Controls	


Cloning	


Gene knock out/knock in	


RNAi	



Floods of data���

 “Grand Challenge” problems	
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CS Points of Contact	



Scientific visualization 	


Gene expression patterns	



Databases	


Integration of disparate, overlapping data sources	


Distributed genome annotation in face of shifting underlying coordinates	



AI/NLP/Text Mining	


Information extraction from journal texts with inconsistent 
nomenclature, indirect interactions, incomplete/inaccurate models,…	



Machine learning	


System level synthesis of cell behavior from low-level heterogeneous data 
(DNA sequence, gene expression, protein interaction, mass spec, 	

	



Algorithms	


…	
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Frontiers & Opportunities	



New data:	


Proteomics, SNP, arrays CGH, comparative 
sequence information, methylation, chromatin 
structure, ncRNA, interactome	



New methods: 	


graphical models? rigorous filtering?	



Data integration	


many, complex, noisy sources	



Systems Biology	
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Frontiers & Opportunities	



Open Problems:	


splicing, alternative splicing	


multiple sequence alignment (genome scale, w/ RNA etc.)	


protein & RNA structure	


interaction modeling	


network models	


RNA trafficing	


ncRNA discovery	


…	
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Exciting Times	



Lots to do 	


Various skills needed	



I hope I’ve given you a taste of it	





Thanks!	




