Phylogenies (aka Evolutionary Trees)

CSE 527

Autumn 2009

10. Parsimony and Phylogenetic

Footprinting
"Nothing in biology makes sense, except in the light of evolution"
-- Theodosius Dobzhansky, I973

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Human	A T	G	A T ... G G	0 changes
Chimp	A T	G	$A T \ldots G^{G}$	
Gorilla	A T	G	A G ... G	
Rat	A T	G	C G ... G	
Mouse	A T	G	C T ... G	

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Sankoff \& Rousseau,'75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Counting Events Parsimoniously

Lesson of example - no unique reconstruction

But there is a unique minimum number, of course
How to find it?
Early solutions 1965-75

Sankoff-Rousseau Recurrence

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

For Leaf u :

$$
P_{u}(s)= \begin{cases}0 & \text { if } u \text { is a leaf labeled } s \\ \infty & \text { if } u \text { is a leaf not labeled } s\end{cases}
$$

For Internal node u :

$$
P_{u}(s)=\sum_{v \in \operatorname{child}(u)} \min _{t \in\{A, C, G, T\}} \operatorname{cost}(s, t)+P_{v}(t)
$$

Time: O (alphabet ${ }^{2} \times$ tree size)

Sankoff \& Rousseau, '75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

$P_{u}(s)=\sum_{v \in \operatorname{child}(u)} \min _{t \in\{A, C, G, T\}} \operatorname{cost}(s, t)+P_{v}(t)$					
	s	v	t	$\operatorname{cost}(\mathrm{s}, \mathrm{t})+\mathrm{P}_{\mathrm{v}}(\mathrm{t})$	min
			A		
			C		
u a c g		v	G		
u A C G			T		
,			A		
T Ac		v_{2}	C		
$A C \not C T A C G T$			G		
-			T		
$v_{1} \quad v_{2}$				sum: $\mathrm{P}_{\mathrm{u}}(\mathrm{s})=$	

Sankoff \& Rousseau, '75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Sankoff \& Rousseau, '75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Which tree is better?

Which has smaller parsimony score?
Which is more likely, assuming edge length proportional to evolutionary rate?

Parsimony - Generalities

Parsimony is not the best way to evaluate a phylogeny (maximum likelihood generally preferred - as previous slide suggests)
But it is a natural approach, works well in many cases, and is fast.

Finding the best tree: a much harder problem
Much is known about these problems; Inferring
Phylogenies by Joe Felsenstein is a great resource.

Phylogenetic Footprinting

See link to Tompa's slides on course web page http://www.cs.washington.edu/homes/tompa/papers/ortho.ppt

