Instructors: R&@J€sh Rao (rao@cs.washington.edu)
// drienne Fairhall (fairhall@u)

FAs: Scott Schremmer (scotths@cs)
’ Kai Miller (kai@cs)

Today’s Agenda

0 Introduction: Who are we?
0 Course Info and Logistics

0 Motivation
< What is Computational Neuroscience?

< [lustrative Examples

0 Neurobiology 101: Neurons and Networks
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Course Information

0 Browse class web page for syllabus and course information:
@ http://www.cs.washington.edu/education/courses/528/05wi

O Lecture slides will be made available on the website
0 Add yourself to the mailing list » see class web page

0 Textbook
<& Theoretical Neuroscience:
Computational and Mathematical Modeling
of Neural Systems
< By Peter Dayan and Larry Abbott
MIT Press, 2001
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Course Topics

O Descriptive Models of the Brain
< How is information about the external world encoded in
neurons and networks? (Chapters 1 and 2)
< How can we decode neural information? (Chapters 3 and 4)

O Mechanistic Models of Brain Cells and Circuits
< How can we reproduce the behavior of a single neuron in a
computer simulation? (Chapters 5 and 6)
< How do we model a network of neurons? (Chapter 7)

O Interpretive Models of the Brain
< Why do brain circuits operate the way they do?
< What are the computational principles underlying their
operation? (Chapters 7-10)
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Course Goals

O General Goals:

1. To be able to quantitatively describe what a given
component of a neural system is doing based on
experimental data

2. To be able to simulate on a computer the behavior of
neurons and networks in a neural system

3. To be able to formulate specific computational principles
underlying the operation of neural systems

0 We would like to enhance interdisciplinary cross-talk

Neuroscience «—> Comp. Science and Engineering
(Experiments, methods,  (Computational principles, algorithms,

protocols, data, ...) simulation software/hardware, ...)
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Specific Goals

O Learn how to quantify a neuron’s response using ideas from
statistics and information theory

0 Understand neural responses through probabilistic methods
such as Bayesian inference and MAP estimation

0 Learn to construct and simulate biophysical models of neural
membranes, “compartments,” and entire neurons

0 Explore information processing in networks of neurons

0 Learn how networks can adapt themselves based on
unsupervised and supervised learning rules
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Workload and Grading

0 Course grade (out of 4.0) will be based on homeworks and a

final group project according to:
< Homeworks: 70%
< Final Project: 30%

O No midterm or final

O Homework exercises: Either written or Matlab-based
< Go over Matlab tutorials on the web

0 Group Project: As part of a group of 1-3 persons, investigate
a "mini-research" question using methods from this course
< Each group will submit a report and give a presentation
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Okay, enough logistics — let’s begin...

What is Computational Neuroscience?
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What is Computational Neuroscience?

0 “The goal of computational neuroscience is to explain in
computational terms how brains generate behaviors”
(Sejnowski)

0 Computational neuroscience provides tools and methods for
“characterizing what nervous systems do, determining how
they function, and understanding why they operate in
particular ways” (Dayan and Abbott)

< Descriptive Models (What)
< Mechanistic Models (How)
< Interpretive Models (Why)

R. Rao, CSE 528 Lecture 1 9

An Example: Cortical Receptive Fields

0 What is the receptive field of a brain cell (neuron)?
< Any ideas?
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An Example: Cortical Receptive Fields

0 What is the receptive field of a brain cell (neuron)?

0 Classical Definition: The region of sensory space that

activates a neuron (Hartline, 1938)
< Example: Region of the retina where a spot of light activates a

retinal cell

0 Current Definition: Receptive field of a cell = specific
properties of a sensory stimulus that generate a strong

response from the cell
< Example: A circular spot of light that turns on at a particular

location on the retina
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An Example: Cortical Receptive Fields

Let’s look at:
I. A Descriptive Model of Receptive Fields
I. A Mechanistic Model of Receptive Fields
II. An Interpretive Model of Receptive Fields
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I. Descriptive Model of Receptive Fields

Retinal Ganglion Cells

R. Rao, CSE 528 Lecture 1

Central illumination

Output

Spot of light turned on
responses

Annular illumination

. it (spike trains)
@ from a
i Retinal

Ganglion
Diffuse illumination Cell
| I
el s oo e aijpiodin]
0 0.5 1.0 1.5 sec
(From Nicholls et al., 1992) 13

I. Descriptive Model of Receptive Fields

Mapping a retinal receptive field with spots of light

ON-CENTER CELL
RESPONSES
Central spot

of light !H WH [ H’I

Light

Peripheral | I

spot | el e o Lt e L
On-Center
Off-Surround
Receptive Field
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OFF-CENTER CFLI
RESPONSES

Off-Center
¢ On-Surround
Receptive Field

(From Nicholls et al., 1992) 14




Descriptive Models: Cortical Receptive Fields

Examples of

receptive
o fields in
i primary
/' .
== visual cortex
(V1)
Lateral
Retina  Geniculate V1
Nucleus (LGN)
IS AN oo
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Extracting a Quantitative Descriptive Model

O The Reverse Correlation Method
(Brief intro for now)

Stimulus Sequence

Random Bars e ", N Spike Train
Sequence L oy

qat . For each output spike, look back in time for
(white noise . .

. the stimulus sequence that caused this spike;
stimulus)

(Copyright, Izumi Ohzaway SOTPULE the average sequence
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A Quantitative Model of a V1 Receptive Field

Spatial Receptive
Field for T = 0-300 ms

Space (Y)
Time (T)

Space (X)
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Space-Time
Receptive Field

Space (X)

(Copyright 1995, Izumi Ohzawa)
17

II. Mechanistic Model of Receptive Fields

0 The Question: How are receptive
fields constructed using the neural
circuitry of the visual cortex?

=

o Yikd
S
(\.g—--;(
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How are
these
oriented
receptive
fields
obtained?




II. Mechanistic Model of Receptive Fields: V1

Lateral

Geniculate Vi Cells 7 Cell
Nucleus (LGN)
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II. Mechanistic Model of Receptive Fields: V1

___________________ Simple

i = cortical

cell
(From Nicholls et al., 1992) ce
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Model suggested by
Hubel & Wiesel in the
1960s: V1 RFs are
created from converging
LGN inputs

Center-surround LGN
RFs are displaced along

preferred orientation of
V1 cell

This simple model is still

controversial!
20




1. Interpretive Model of Receptive Fields

0 The Question: Wy are receptive
fields in V1 shaped in this way?

What are the
computational
advantages of

such receptive
fields?

f [ded] =
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III. Interpretive Model of Receptive Fields

0 Computational Hypothesis: Suppose the
goal is to represent images as faithfully and
efficiently as possible using neurons with
receptive fields RF,, RF,, etc.

0 Given image I, want to reconstruct I using
neural responses r,, 7, etc.:
A

I=> RFy,

0 Idea: Find the RF, that minimize the
squared pixelwise errors: || I-1|]* and are

as independent from each other as possible
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1. Interpretive Model of Receptive Fields

0 Start out with random RF; and run your algorithm on natural
images

Natural Images

Dark o Receptive Ficld Size

White Reccpt!v:; Fields l'ronﬁalural Images \
- VEEEhEPE=IOESNGENER
EexFEIRIUmlARNUS
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III. Interpretive Model of Receptive Fields

0 Conclusion: The receptive fields in V1 may be a
consequence of the brain trying to find faithful and efficient
representations of an animal’s natural environment

Receptive Fields in V1

White Recept!v: Fields frml:.]:Iatural Images _
VIS EhEPE=sICSNEN R
ExhFEUIRSi=lATNUD
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We will explore a variety of Descriptive,

Mechanistic, and Interpretive models
throughout this course

The subject of our exploration:
Our (3-pound) Universe
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Our 3-pound Universe

Cerebrum/Cerebral Cortex
Thalamus

Pons

Medulla

Spinal cord
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Major Brain Regions: Brain Stem & Cerebellum

Medulla
Breathing, muscle tone
and blood pressure

Pons
Connects brainstem with
cerebellum & involved
in sleep and arousal

Cerebellum
Coordination of voluntary
movements and
sense of equilibrium

Pons
Cerebellum

Medulla
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Spinal cord

Major Brain Regions: Midbrain & Retic. Formation

Midbrain
Eye movements, visual and
auditory reflexes

Reticular Formation
Modulates muscle
reflexes, breathing &
pain perception. Also
regulates sleep,
wakefulness & Cerebellum

arousal

Midbrain

Pons
Medulla
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Major Brain Regions: Thalamus & Hypothalamus

Thalamus
“Relay station” for all
sensory info (except
smell) to the cortex

_H ypothalamug

Hypothalamus
Regulates basic needs ¢y

ﬁghtmg, ﬂeeing’ callosum
feeding, and Cerebellum
mating

Pons
Medulla

Spinal cord
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Major Brain Regions: Cerebral Hemispheres

0O Consists of: Cerebral
cortex, basal ganglia,

hippocampus, and
amygdala

0 Involved in perception
and motor control,
cognitive functions,
emotion, memory, and
learning spire oord
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Enter...the neuron (“brain cell”)

Cerebrum/Cerebral Cortex

Thalamus

Pons

3 ™ - Medulla

A Pyramidal Neuron Spinal cord
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The Neuron Doctrine/Dogma
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Cortex Neuron

Neuron Doctrine: s
“The neuron is the appropriate basis j\,m

. , T
for understanding the computational |
. . {sen
and functional properties of the j:
brain” £
Salnal marer neuren Hisaceanpal pyrartical call Purkiric el af sexehalkin

First suggested in 1891 by Waldeyer

From Kandel, Schwartz, Jessel, Principles of
Neural Science, 3 edn., 1991, pg. 21
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The Idealized Neuron
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What is a Neuron?

0 A “leaky bag of charged liquid” B
O Contents of the neuron enclosed ,0‘ & :
within a cell membrane HHZ %
0 Cell membrane is a lipid bilayer ; ' \“?,07
< Bilayer is impermeable to Y @
charged ion species such as o000 000000000
Na*, CI', K, and Ca?* ﬂm ? ‘ f Q (\ Y?WWWWJWY

From Kandel, Schwartz, Jessel, Principles of
Neural Science, 3 edn., 1991, pg. 67
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The Electrical Personality of a Neuron

0 Each neuron maintains a potential

difference across its membrane [Na*], [CI], [Ca?']
< Inside is ~70 to —80 mV (K7D, [AT]
relative to outside 0m Outside
D endtes s [N
outside; [K*] and organic Z L l A I ) [\ }
anions [A-] higher inside - COOLOO0OX

. . -70 nV
< lonic pump maintains -70 mV InSIde

difference by expelling Na* out [K*], [A7]
and allowing K" ions in [Na'], [CI], [Ca*']
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Influencing a Neuron’s Electrical Personality

How can the electrical potential difference
be changed in local regions of a neuron?
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Membrane Proteins: The Gatekeepers

0 Proteins in membranes act as
pores or channels that are ion-

specific. E.g. Pass K" but not CI- . ;
or Na*t ;LJ'JJ‘

0 lonic channels are gated
< Voltage-gated: Probability of
opening depends on membrane 4 Extracaluiar
voltage R e
< Chemically-gated: Binding to a
chemical causes channel to open
< Mechanically-gated: Sensitive to

pressure or stretch From Kandel, Schwartz, Jessel, Principles of Neural
Science, 3 edn., 1991, pgs. 68 & 137

Cytoplasmic
surface

lon selective channel
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Extracellular fluid [Na*], [CI], [Ca?']

(outside of neuron)

[K'], [A7]
Potassium Sodium channels
channels are open. are closed.
Potassium can move Sodium cannot
out of the cell. move into the cell.

o [K*], [A7]
©® Potassium ions (K*) o [Na'], [CI], [Ca*']
@ Seodium ions (Na*) . @ @

Chlatide ions (C) Intracellular fluid

e Protein molecules (A7) (inside of neuron)
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Gated Channels allow Neuronal Signaling

O Inputs from other neurons =
chemically-gated channels (at

“synapses’’) = Changes in local
membrane potential

0 Potentials are integrated spatially
and temporally in dendrites and cell
body of the neuron

0 Cause opening/closing of voltage-
gated channels in dendrites, body,
and axon = causes depolarization
(positive change in voltage) or
hyperpolarization (negative change)

R. Rao, CSE 528 Lecture 1 39

The Output of a Neuron: Action Potentials

0 Voltage-gated channels cause AV Action Potential
. . . — (spike)
action potentials (spikes)
1. Rapid Na* influx causes
rising edge
2. Na* channels deactivate
3. K* outflux restores
membrane potential

O Positive feedback causes spike ° e :
< Na" influx increases
membrane potential,
causing more Na* influx

From Kandel, Schwartz, Jessel, Principles of Neural
Science, 3 edn., 1991, pg. 110
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Na+ Na+ Na+
Ne+ Na+
Na+

An increase in permeability at one location of the
membrane can spread to neighboring locations

[
>

Net  Nat Mo+ Nat

Axons have very large concentrations of voltage-gated Na+
channels, causing the excitation to actively travel forward.

Propagation of a Spike along an Axon
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Communication between Neurons: Synapses

O Synapses are the “connections” ~ Pike /J i"ﬁ ”HIJ—l\*
between neurons j TN e
< Electrical synapses (gap / & mmwwm
junctions) / A (@ioi?;\ .
< Chemical synapses (use o s ¥ e

neurotransmitters)

0 Synapses can be excitatory or _
inhibitory spaialanion
0 Synapse Doctrine: Synapses

are the basis for memory and
learning K
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Distribution of synapses on a real neuron...

(From Cell/Neuron journal
special supplement, 1993)
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An Excitatory Synapse

]
@]

Na:
)]
== @O»\

i

T

Na+
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Input spike -2
Neurotransmitter
release >

Binds to Na
channels (which
open) 2>

Na+ influx 2>
Depolarization due
to EPSP (excitatory
postsynaptic
potential)
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An Inhibitory Synapse

O
o OK
T
O S*T K+
O ==

=%
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K+

Input spike =2
Neurotransmitter
release >

Binds to K

channels -2

K+ leaves cell =2
Hyperpolarization due
to IPSP (inhibitory
postsynaptic potential)
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Down in the
Synaptic Engine
Room

A reductionist’s
dream! (or
nightmare?)

Note: Even this is
a simplification!

From Kandel, Schwartz,
Jessel, Principles of
Neural Science, 3
edn., 1991
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Synaptic plasticity: Adapting the connections

0 Long Term Potentiation (LTP): Increase in synaptic strength

that lasts for several hours or more

© Measured as an increase in the excitatory postsynaptic
potential (EPSP) caused by presynaptic spikes

Dendrites

A
Pragynaptic A2 K

LTP observed as an increase in size of P20
EPSP for the same presynaptic input =~/
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Types of Synaptic Plasticity

0 Hebbian LTP: synaptic strength increases after prolonged
pairing of presynaptic and postsynaptic spiking (correlated
firing of two connected neurons).

0 Long Term Depression (LTD): Reduction in synaptic
strength that lasts for several hours or more

0 Spike-Timing Dependent Plasticity: LTP/LTD depends on
relative timing of pre/postsynaptic spiking
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Example of measured synaptic plasticity

Hebbian LTP

M~
(=]
I

;

T
LTP
~ Control N
— T e Y e
i
1.0}
o

Measured Synaptic Current (nA)
~
=)

Time (min)
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Spike-Timing Dependent Plasticity

0 Amount of increase or decrease in synaptic strength (LTP/LTD)
depends on relative timing of pre & postsynaptic spikes

pre after post pre before post
At<0 At>0

100 io —
ol e )
e_r S{}- |r/ T ——— < — N
% 90
2 607 )
a 10,

40
E ‘@0 LTP
Q - S o
E 20 a0 5
W gt Lo — § 0?..1:\ ...... A — .6.._9 ......
£ o o B0 @ o
@ -20 o &
= LTD oo
S 407 ol
Qo i

-60 . T T : :

-80 -40 0 40 80
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Comparing Neural and Digital Computing

0 Device count:
< Human Brain: 10! neurons (each neuron ~ 10* connections)
< Silicon Chip: 10! transistors with sparse connectivity

0 Device speed:
< Biology has 100us temporal resolution
© Digital circuits will have a 100ps clock (10 GHz)

0 Computing paradigm:
© Brain: Massively parallel computation & adaptive connectivity
© Digital Computers: sequential information processing via CPU
with fixed connectivity

0 Capabilities:

« Digital computers excel in math & symbol processing...

@ Brains: Better at solving ill-posed problems (speech, vision)?
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Conclusions and Summary

0 Structure and organization of the brain suggests
computational analogies

< Information storage: Physical/chemical structure of
neurons and synapses

< Information transmission: Electrical and chemical
signaling

< Primary computing elements: Neurons

<> Computational basis: Currently unknown (but inching closer)

0 We can understand neuronal computation by discerning the
underlying primitives
< Building descriptive models based on neural data
< Simulating mechanistic models of neurons and networks
< Formulating interpretive models of brain function
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Next Class: Neural Encoding

0 Things to do:
< Visit course website
< Sign up for mailing list (instructions on website)
< Start reading Chapter 1
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