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What have we covered so far?

0 Neural Encoding
< What makes a neuron fire? (e.g., spike triggered average)
< Poisson model

0 Neural Decoding
< Stimulus Discrimination based on firing rate
< Spike-train based decoding of stimulus
< Population decoding (Bayesian estimation)

0 Single Neuron Models
< RC circuit model of membrane
< Integrate-and-fire model
< Conductance-based Compartmental Models
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Today’s Agenda

0 Computation in Networks of Neurons
< From spiking to firing-rate based networks
< Feedforward Networks
OE.g. Coordinate transformations in the brain
< Linear Recurrent Networks
OCan amplify inputs
OCan integrate inputs
OCan function as short-term memory
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Simulating Networks of Neurons

0 Option 1: Use spiking neurons (e.g. I & F neurons)
<@ Advantages: Allows computation and learning based on:
OSpike Timing
OSpike Correlations/Synchrony between neurons
< Disadvantages: Computationally expensive

00 Option 2: Use neurons with firing-rate outputs
< Advantages: Greater efficiency, scales well to large
networks
< Disadvantages: Ignores spike timing issues

0 Question: How are these two approaches related?
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Network Notation

output © — Wb
weights w
input u

Synaptic _ ‘ ' '
input I,(t)=w, IK (t—1)p,(T)dT  Spike train p(t)

t
=w, IK (t—T)u,(r)dr  Firing rate u(t)

R. Rao, CSE528: Lecture 10 5
How good are the Firing Rate Models?
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V(t) = F(I(t)) describes this well but not this case
Input I(t) = I, + I,cos(wxt) .
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Feedforward versus Recurrent Networks

A B
output Vv
W lanIt

r Y = v F(Wu M)

dt
Output  Decay Input Feedback

(For feedforward networks, matrix M = 0)
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The Problem of Coordinate Transformations

B F
A

C F
A

S

g = gaze angle relative to body

s = stimulus or target angle relative to gaze (retinal coordinates)
s+g = stimulus relative to body

Same arm movement required in A and B but s and g are different

How does the brain solve this problem?
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Body-Based Representation in the Monkey
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Body-Based Representation in the Monkey

When head is moved but
gaze remains unchanged:

10 i After head is moved 15°,
801 objects approaching at 15
0. ' in retinal image now elicit
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Suggested Feedforward Network

Output: Premotor Cortex Neuron with Body-Based Tuning Curves

output ©
weights w
input  u

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Input neurons exhibit gaze-dependent gain modulation
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Gaze-Dependent Gain Modulation
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Output of a Simulated Feedforward Network
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What can a Linear Recurrent Network do?

Analysis on board based on eigenvectors of
recurrent weight matrix
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Amplification in a Linear Recurrent Network

Input Output

(noisy cosine)
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9 Preferred angle of neuron

M(6,8") cos(6—-6")

All eigenvalues = 0 except A, = 0.9 1.e. amplification =
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Input Integration for Maintaining Eye Position

eye position /

ON-direction "mm
burst neuron

OFF-direction mmll
burst neuron

persistent activity

ecrone LU0 L AT LEEE
neuron

Input: Bursts of spikes from brain stem oculomotor neurons
Output: Memory of eye position in medial vestibular nucleus
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Next Class: More on Networks

0 Things to do:
< Finish reading Chapter 7
< Homework #3 due next class
< Start working on mini-project
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