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CSE/NEUBEH 528
Lecture 14: Supervised Learning

(Chapter 8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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What’s on the menu today?

✦ Supervised Learning
Why supervised learning? 
➧ Classification
➧ Function Approximation

Perceptrons & Learning Rule
Linear Separability: Minsky-Papert deliver the bad news
Multilayer networks to the rescue
Function Approximation
Backpropagating (errors)
Radial Basis Function Networks
Recurrent Networks
Demos

(Copyright, Gary Larson)
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Why Supervised Learning?

✦ Two Primary Tasks
1. Classification

➧ Inputs u1, u2, … and discrete classes C1, C2, …, Ck
➧ Training examples: (u1, C2), (u2, C7), etc.
➧ Learn the mapping from an arbitrary input to its class
➧ Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)
➧ Inputs u1, u2, … and continuous outputs v1, v2, …
➧ Training examples: (input, desired output) pairs
➧ Learn to map an arbitrary input to its corresponding output
➧ Example: Highway driving

Input = road image, output = steering angle
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Perceptrons

✦ Fancy name for a type of layered feedforward networks

✦ Uses artificial neurons (“units”) with binary inputs and 
outputs

Multilayer
Single-layer
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Perceptron uses “Threshold Units”

✦ Artificial neuron:
m binary inputs and 1 output (-1 or 1)
Synaptic weights wij
Threshold µi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x ≥ 0 and -1 if x < 0

)( ij
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Perceptrons and Classification

✦ Consider a single-layer perceptron
Weighted sum forms a linear hyperplane
Everything on one side of this hyperplane is in class 1 (output = 
+1) and everything on other side is class 2 (output = -1)
Any function that is linearly separable can be computed by a perceptron

✦ Example: AND is linearly separable
a AND b = 1 if and only if a = 1 and b = 1

Linear hyperplane
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Perceptron Learning Rule

✦ Given inputs u and desired output vd, adjust w and µ as 
follows:
1. Compute error signal e = (vd – v) where v is the current output:

2. Change weights and threshold according to e
⇒ For positive inputs, increase weights if error is positive and 

decrease if error is negative
⇒ For positive inputs, decrease threshold if error is positive, 

increase if error is negative
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Linear Inseparability

✦ Single-layer perceptron with threshold units fails if 
classification task is not linearly separable

Example: XOR
a XOR b = 1 iff (a = -1, b = 1) or (a = 1, b = -1)
No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

✦ Minsky and Papert’s book 
showing such negative results 
was very influential – put a 
damper on neural networks 
research for over a decade!

(1,1)
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Solution in 1980s: Multilayer perceptrons

✦ Removes limitations of single-layer networks
Can solve XOR

✦ An example of a two-layer perceptron that computes XOR

✦ Output is 1 if and only if x + y – 2(x + y – 1.5 > 0) – 0.5 > 0
x y
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Multilayer Perceptron: What does it do?
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Example: Perceptrons as Constraint Satisfaction Networks
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Example: Perceptrons as Constraint Satisfaction Networks
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Example: Perceptrons as Constraint Satisfaction Networks
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Perceptrons as Constraint Satisfaction Networks
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Function Approximation

✦ We want networks that can learn a function
Network maps real-valued inputs to real-valued output
Want to generalize to predict outputs for new inputs
Idea: Given input data, minimize errors between 
network’s output and desired output by changing weights 

Continuous output values Can’t 
use binary threshold units anymore

To minimize errors, a differentiable 
output function is desirable
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Sigmoidal Networks

Input nodes ae
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The most common
activation function:

Sigmoid function:

(non-linear
“squashing” function)
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Gradient-Descent Learning (“Hill-Climbing”)

✦ Given training examples (um,dm) (m = 1, …, N), define an 
error function (cost function or “energy” function)

✦ Would like to change w so that E(w) is minimized
Gradient Descent: Change w in proportion to –dE/dw
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“Stochastic” Gradient Descent

✦ What if the inputs only arrive one-by-one?

✦ Stochastic gradient descent approximates sum over all inputs 
with an “on-line” running sum:
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Also known as 
the “delta rule” 
or “LMS rule”

delta = error
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But wait….

✦ Delta rule tells us how to modify the connections from input 
to output (one layer network)

One layer networks are not that interesting (remember XOR?)

✦ What if we have multiple layers?

Delta rule can be used to 
adapt these weights

How do we adapt these?

Input u = (u1  u2 … uK)T

Output v = (v1  v2 … vJ)T; Desired = d
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Let’s Backpropagate (Errors)

✦ Backpropagation = gradient-descent learning for multilayer
feedforward networks

✦ Idea: Propagate credit/blame for errors back to internal nodes
Use delta rule to change weights for output layer
Use chain rule (from calculus) to change weights for internal 
“hidden” nodes

Input u = (u1  u2 … uK)T

Output v = (v1  v2 … vJ)T
error = (d – v)

Delta rule

Backprop rule

Backpropagate
this to correct all 

weights
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Notation for Backprop
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Find W and w that minimize 
total squared output error: 
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Backpropagation (for Math lovers’ eyes only!)

✦ Learning rule for hidden-output connection weights:

✦ Learning rule for input-hidden connection weights:
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Alternate Method: Radial Basis Function 
Networks

input nodes

output neurons

one layer of
hidden neurons
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Radial Basis Function Networks

“activation” function:

∑
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Radial Basis Function Networks
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26R. Rao, 528: Lecture 12

Radial Basis Function Networks

output of network:

∑=
i

ijij hw ,out

input nodes

output neurons

• Main Idea: Use a mixture of  Gaussians
to approximate the output

• Gaussians are called “basis functions”
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RBF networks

✦ Radial basis functions
Hidden units store means and 
variances
Hidden units compute a 
Gaussian function of inputs 
x1,…xn that constitute the 
input vector x

✦ Learn weights wi, means µi, 
and variances σi by 
minimizing squared error 
function (gradient descent 
learning)

y

28R. Rao, 528: Lecture 12

RBF Networks and Multilayer Perceptrons

RBF: MLP:

input nodes

output neurons
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Recurrent Supervised Networks

✦ Why use recurrent networks?
To keep track of recent history and context
Can learn temporal patterns (time series or oscillations)

✦ Examples
Hopfield network (see previous lecture and textbook)
Recurrent backpropagation networks: for small 
sequences, unfold network in time dimension and use 
backpropagation learning
Partially recurrent networks E.g. Elman net
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Partially Recurrent Networks

✦ Example
Elman net
➧ Partially recurrent
➧ Context units keep 

internal memory of 
past inputs

➧ Fixed context weights
➧ Backpropagation for 

learning
➧ E.g. Can disambiguate 

A B C and 
C B A

Elman network
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Demos (by Keith Grochow, CSE 599, 2001)

✦ Neural network learns to balance a pole on a cart
System:

4 state variables: xcart, vcart, θpole, vpole
1 input: Force on cart

Backprop Network:
Input: State variables
Output: New force on cart

✦ NN learns to back a truck into a loading dock
System (Nyugen and Widrow, 1989):

State variables: xcab, ycab, θcab
1 input: new θsteering

Backprop Network:
Input: State variables
Output: Steering angle θsteering

xcart

vcart

vpole

θpole
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Next Class: Reinforcement Learning

✦ Things to do:
Read Chapter 9
Finish Last Homework (due this Friday, 5pm)
Work on mini-project

I’ll be bäck
(for reinf. learning)


