CSE/NEUBEH 528

Lecture 14: Supervised Learning
(Chapter 8)

Image from | dean:la,asu.edu/news/images/ubep2001/neuron3.jpg
Jic igur m Dayan & Abb ook
http://people.brandeis.edu/~abbott/book/index. html

What’s on the menu today?

O Supervised Learning
< Why supervised learning? :
(Copyright, Gary Larson)
O Classification e —————
0 Function Approximation
@ Perceptrons & Learning Rule
@ Linear Separability: Minsky-Papert deliver the bad news
© Multilayer networks to the rescue
© Function Approximation
< Backpropagating (errors)
< Radial Basis Function Networks
< Recurrent Networks
© Demos

R. Rao, 528: Lecture 12 2

Why Supervised Learning?

0 Two Primary Tasks
1. Classification
O Inputs u,, u,, ... and discrete classes C,, C,, ..., C,
O Training examples: (u,, C,), (u,, C), etc.
O Learn the mapping from an arbitrary input to its class
0O Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)
O Inputs u,, u,, ... and continuous outputs v, v,, ...
0 Training examples: (input, desired output) pairs
0 Learn to map an arbitrary input to its corresponding output
0 Example: Highway driving
Input = road image, output = steering angle

R. Rao, 528: Lecture 12 3

Perceptrons

0 Fancy name for a type of layered feedforward networks

0 Uses artificial neurons (““units”) with binary inputs and
outputs

Multilayer
Single-layer

AN

R. Rao, 528: Lecture 12 4

Perceptron uses “Threshold Units”

0 Artificial neuron:
< m binary inputs and 1 output (-1 or 1)

=~ Synaptic weights w;; _ B
< Threshold L., Vi = G(Z Wylt M)
J

O(x)=1ifx=0and-1ifx<0

Wiy Weighted Sum Threshold

Inputsu, w,
i i Output v;
(-lor+l) =] Z (-1 or +1)
Wis
Hi

R. Rao, 528: Lecture 12 5

Perceptrons and Classification

0 Consider a single-layer perceptron Z wau. = =0

© Weighted sum forms a linear hyperplane f v !

@ Everything on one side of this hyperplane is in class 1 (output =
+1) and everything on other side is class 2 (output = -1)
< Any function that is linearly separable can be computed by a perceptron

0 Example: AND is linearly separable
©» aANDb=1ifandonlyifa=1andb=1

R. Rao, 528: Lecture 12

Perceptron Learning Rule

0 Given inputs u and desired output vd, adjust w and as
follows:
1. Compute error signal e = (v — v) where v is the current output:

v=00 wu,; — 1) =W u-p)

2. Changej weights and threshold according to e
= For positive inputs, increase weights if error is positive and
decrease if error is negative
= For positive inputs, decrease threshold if error is positive,
increase if error is negative

w o wHe(! —v)u
U — U—e(v' —v) A - B meansreplace A with B

R. Rao, 528: Lecture 12 7

Linear Inseparability

0 Single-layer perceptron with threshold units fails if
classification task is not linearly separable
< Example: XOR
2 aXORb=1iff(a=-1,b=1)or(a=1,b=-1)
< No single line can separate the “yes” (+1)
outputs from the “no” (- 1) outputs!

0 Minsky and Papert’s book
showing such negative results eS|
was very influential — put a
damper on neural networks
research for over a decade!

R. Rao, 528: Lecture 12 8

Solution in 1980s: Multilayer perceptrons

0 Removes limitations of single-layer networks
< Can solve XOR

0 An example of a two-layer perceptron that computes XOR

(02)
1 1
(1)
X y
0 Outputis 1 ifandonlyifx+y—-2(x+y—-1.5>0)-05>0
R. Rao, 528: Lecture 12 9

Multilayer Perceptron: What does it do?

out

R. Rao, 528: Lecture 12 10

Example: Perceptrons as Constraint Satisfaction Networks

out y 1+%x_y<0 Q=

R. Rao, 528: Lecture 12 11

Example: Perceptrons as Constraint Satisfaction Networks

out
y @~/

R. Rao, 528: Lecture 12

Example: Perceptrons as Constraint Satisfaction Networks

®--

out y

R. Rao, 528: Lecture 12 13

Perceptrons as Constraint Satisfaction Networks

out

R. Rao, 528: Lecture 12 14

Function Approximation

0 We want networks that can learn a function
< Network maps real-valued inputs to real-valued output
< Want to generalize to predict outputs for new inputs
< Idea: Given input data, minimize errors between
network’s output and desired output by changing weights

Continuous output values = Can’t
use binary threshold units anymore

To minimize errors, a differentiable
output function is desirable

Input
R. Rao, 528: Lecture 12 15
Sigmoidal Networks
The most common
activation function:
g(w'u) Output Sigmoid function:
v 1
Input nodes gla)= 1+ e P

u=(u, u uy)f

g(a)
1 "‘/

a
(non-linear
“squashing” function)
R. Rao, 528: Lecture 12 16

Gradient-Descent Learning (“Hill-Climbing”)

0 Given training examples (u”,d”) (m =1, ..., N), define an
error function (cost function or “energy” function)

EW =oY@ =" v =)

0 Would like to change w so that E(w) is minimized

< Gradient Descent: Change w in proportion to —dE/dw
dE

W o> W—&—
dw

dE av"

- dm _Vm - dm _Vm 1 wTum um
I ;()T’w ;(g ()

R. Rao, 528: Lecture 12 17

“Stochastic” Gradient Descent

0 What if the inputs only arrive one-by-one?

0 Stochastic gradient descent approximates sum over all inputs
with an “on-line” running sum:

dE,
W o> W—§&—
dw Also known as
% =—(d" _vm)gl(wTum)um the “delta rule”
dw NI or “LMS rule”
delta = error

R. Rao, 528: Lecture 12 18

But wait....

0 Delta rule tells us how to modify the connections from input

to output (one layer network)
© One layer networks are not that interesting (remember XOR?)

0 What if we have multiple layers?

Output v= (v, v, ... v;)I; Desired =d

. Delta rule can be used to
adapt these weights

0
W How do we adapt these?

Inputu=(u; u, ... ug)’

R. Rao, 528: Lecture 12 19

Let’s Backpropagate (Errors)

0 Backpropagation = gradient-descent learning for multilayer
feedforward networks

0 Idea: Propagate credit/blame for errors back to internal nodes
< Use delta rule to change weights for output layer
< Use chain rule (from calculus) to change weights for internal
“hidden” nodes

Backpropagate Delta rule
this to correct all Back |
weights 4« packprop rule

Input u = (u; u, ... ug)’
R. Rao, 528: Lecture 12 20

Notation for Backprop

m
Xj

Find W and w that minimize
total squared output error:

1 m m
E(W,w)=_2 Jld" -v"

= 27 vy

R. Rao, 528: Lecture 12 21

Backpropagation (for Math lovers’ eyes only!)

0 Learning rule for hidden-output connection weights:

VVij - VVij _gai
o,
dE
A @ (W
dVVU ~ - y—J J
0 Learning rule for input-hidden connection weights:
ox”
w, - w, —& 0F But: OF = OE G {chain rule}
’k T ow ow, Ox7 Ow
ik Jk j J
dE — m m I m I m m
dw = _Z " -v"g (Z VVg/x_/)W;/ (& (Z WUy uy
Jjk m,i J k

R. Rao, 528: Lecture 12 22

Alternate Method: Radial Basis Function
Networks

output neurons

one layer of
hidden neurons

input nodes

R. Rao, 528: Lecture 12

23

Radial Basis Function Networks

output neurons

“activation” function:

a; :\ Z('xi _/'Ii,j)z
i=1

_—

input nodes
R. Rao, 528: Lecture 12

24

Radial Basis Function Networks

output neurons

___— output function:
(Gaussian bell-shaped function)
h(a) &
h(a)=e 2
! a
input nodes
R. Rao, 528: Lecture 12 25

Radial Basis Function Networks

output neurons

output of network:

out; = wa.hl.
i

* Main Idea: Use a mixture of Gaussians
to approximate the output
» Gaussians are called “basis functions™

input nodes
R. Rao, 528: Lecture 12 26

RBF networks

0 Radial basis functions INPUTS

< Hidden units store means and
variances .

< Hidden units compute a
Gaussian function of inputs

HIDDEN LAYER

OUTPUT

w O

‘
ON
1

X{,...X, that constitute the x
input vector x

O Learn weights w;, means |,
and variances O; by =
minimizing squared error
function (gradient descent
learning)

R. Rao, 528: Lecture 12

O 2

(1531}

RBF Networks and Multilayer Perceptrons

output neurons

input nodes
R. Rao, 528: Lecture 12

MLP:

%
%
++"'"'
+
t+

i

28

Recurrent Supervised Networks

0 Why use recurrent networks?
< To keep track of recent history and context
< Can learn temporal patterns (time series or oscillations)

0 Examples
< Hopfield network (see previous lecture and textbook)
< Recurrent backpropagation networks: for small
sequences, unfold network in time dimension and use
backpropagation learning
< Partially recurrent networks E.g. Elman net

R. Rao, 528: Lecture 12 29

Partially Recurrent Networks

O Example Elman network
< Elman net
O Partially recurrent fpt Layer - Hiaden Layer - Qutput Layer

0 Context units keep
internal memory of
past inputs

0 Fixed context weights

0 Backpropagation for
learning

O E.g. Can disambiguate
A->B->C and
C>B~>A

R. Rao, 528: Lecture 12 30

Demos vy Keith Grochow, CSE 599, 2001)

0 Neural network learns to balance a pole on a cart pole
© System:
< 4 state variables: X e Vour Opoter Vpole cart

< 1 input: Force on cart
< Backprop Network:
< Input: State variables
< Output: New force on cart

0 NN learns to back a truck into a loading dock
< System (Nyugen and Widrow, 1989):
< State variables: X ., Yeans Ocan B
= 1 input: new Bq.in :
< Backprop Network:
< Input: State variables
< Output: Steering angle 6

steering ices]

R. Rao, 528: Lecture 12 iy 3 31

Next Class: Reinforcement Learning

0 Things to do:
< Read Chapter 9
< Finish Last Homework (due this Friday, Spm)
< Work on mini-project

I’ll be back
(for reinf. learning)

R. Rao, 528: Lecture 12 32

