CSE/NB 528

Lecture 'l More on Networks
(Chapters 7 & 8)

http://people.brandeis.edu/~abbott/book/index.html

Gameplan for Today

0 Wrap up of Nonlinear Recurrent Networks

0 Plasticity and Learning
< Types: Unsupervised, Supervised, and Reinforcement learning

0 Unsupervised Learning
< Hebb rule and its variants (Covariance, BCM, Oja rule)

< Principal Component Analysis (PCA)
< Temporally Asymmetric Hebbian learning
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Associative Memories (Hopfield Networks)

0 Fully connected, no feedforward inputs

Idea: Store
patterns as fixed
output V points of this
network

dl _
TE =-I+M @(I) ot Question: Will I

always converge

dl. to a fixed point?
i — — {
TE =-1 +ZM,.jvj wherev, =g(7)
J
g = sigmoid function
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Enter...Lyapunov Functions

0 Idea: If dI/dt causes some function L(I) to always decrease or
remain constant (i.e. dL/dt < 0) and L has a lower bound
(with dL/dt = 0 only if dI/dt = 0), then dl/dt = 0 eventually

© Network converges to a fixed point

0 L also called “energy” function or “cost” function

L(T) L
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Lyapunov for Hopfield networks

0 What is a good Lyapunov function L(I) for Hopfield nets?

0 What constraints are required on the recurrent weights M?
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Lyapunov for Hopfield networks

Given : T%= -1, +ZM‘7vf wherev; =g(/,) =tanh(fI )
J

Define: L(I)= —%ZMUVI.V = j g7 (v)dv
i i 0

If M is symmetric (M, = M ), we can show :

dL dr. Y’
LN L <o
o Zg(,)(dtj

Take-home exercise!

Since L is bounded from below and dL/dt = 0 only if dI/dt = 0,
L cannot decrease forever and dI/dt = 0 eventually for all i
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Example of Auto-Associative Memory
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Pattern Completion in a Hopfield Network

Network converges Local minimum
from here (“attractor”) of cost
to here \/ (or “energy”) function

stores pattern
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Pattern Recall in Hopfield Nets

Stable states

Initial states (fixed points)
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What about Non-Symmetric Recurrent Networks?

0 Example: Network of Excitatory (E) and Inhibitory (I)
Neurons
© Connections can’t be symmetric: Why?

dV +
TET: = Vg +[MEEVE +ME1V1 _yE]

dv, _ +
TIE -V +[M11V1 +M v, _yl]

Simple 2 neuron model for representing interacting populations
One excitatory neuron and one inhibitory neuron
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Stability Analysis of Nonlinear Recurrent Networks

General case : av =f(v)
dt

Suppose v, is a fixed point (i.e., f(v_) = 0)
. dv _de
Nearv_,v(t)=v_ +e() (le,—=—
(0 (0 ( 7 dt)

Taylor expansion : f(v(¢)) =f(v,)+ gf
A4

&(1)

v

de J 1s the “Jacobian

dv of
—= HN=J&0 == .
ws() ® dt matrix”

dt  ov

Vv,

Derive solution for v(¢) based on eigen-analysis of J
Eigenvalues of J determine stability of network
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Example: Non-Symmetric Recurrent Networks

0 Specific Network of Excitatory (E) and Inhibitory (I)
Neurons:

10 ms 1.25 -1 -10
\TE d;f ="V +[MEEVE +Myv, _yE]+
dv, _ +
/TI a Vi +[M11V1 +M g _yl]
Parameter 0 1 10
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Linear Stability Analysis

dvp _—vg+ [M Ve Y Mpv Y, E] Take derivatives of right
dt Ty hand side with respect to

both v, and v,

@ -V +[M11V1 +M v _yl]
dt 7,
0 Matrix of derivatives (the “Jacobian Matrix”):

i (M —1) My, |
J= Iy Ip
ﬁ (M, -1)
L TI TI i
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Compute the Eigenvalues

A=

O Jacobian Matrix:
(M EE 1) M EI
Tg Tg
M IE (M u - 1)
7, 7,

0 Its two eigenvalues (obtained by solving det(J — Al) = 0):

2

l (MEE_1)+(MH_1)i MEE_l_MII_l +4MEIMIE
2 T, T, T, 7, .7,
Different dynamics depending on real and imaginary parts of A
(see pages 410-412 of Appendix in Text)
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Phase Plane and Eigenvalue Analysis

A B T,= 30ms 50ms
20
807 wdv, /dE=0 T,
o5 | = T T T T 1
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§20— & 0] T, (ms)
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0 —T T T T 1 (-g 0 T T T T 1
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dV +
1055 = -y, +[1.25v, v, +10]
dt E E 1
dV +
r, L=y, +[00, +v, -10]
1 dt 1 1 E
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Damped Oscillations in the Network

A B
60
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= o0 25 | 4‘(101/5”:0
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T,= 30 ms (negative real eigenvalue)
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Unstable Behavior and Limit Cycle

Limit
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So far, we have been analyzing networks with
fixed sets of synaptic weights W and M

Can these be adapted in response to inputs?
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Plasticity and Learning: Adapting the Connections

input u

0 Question 1: How do we adapt the synaptic weights W and M
to solve useful tasks?

0O Question 2: How does the brain do it?
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Synaptic Plasticity in the Brain
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|__ﬁ’_| LTP = Long Term Potentiation

LTD = Long Term Depression
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Other Forms of Plasticity in the Brain

Short-term
depression

0 Short-Term Synaptic Plasticity
< Short-term depression/facilitation s

© Dynamics may change on a long-term S

basis via LTP/LTD

O Changes to intrinsic excitability of cell

< Density and distribution of various i

channels (ionic conductances)
< Not well-studied

O Growth and morphological changes in

dendrites
< Not well-studied

0 Addition of new neurons?
@ Hot topic of research these days...
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The Theory: Classification of Learning Algorithms

0 Unsupervised Learning
< Synapses adapted based solely on inputs
@ Network self-organizes in response to statistical patterns in input
< Similar to Probability Density Estimation in statistics

0 Supervised Learning
© Synapses adapted based on inputs and desired outputs
© External “teacher” provides desired output for each input
@ Goal: Function approximation

0 Reinforcement Learning
< Synapses adapted based on inputs and (delayed)
reward/punishment
@ Goal: Pick outputs that maximize total expected future reward

< Similar to optimization based on Markov decision processes
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Let’s start with Unsupervised Learning

Consider a single neuron receiving feedforward
inputs from other neurons (e.g. from the retina)
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The Grand-Daddy of Unsupervised Learning

0 Rule hypothesized by Donald Hebb in 1949

0 Hebb’s learning rule:

“If neuron A frequently contributes to the firing of
neuron B, then the synapse from A to B should
be strengthened”

0 Related Mantra: Neurons that fire together wire
together

0 Hebb’s goal: Produce clusters of neurons (“ce//
assemblies”) that fire together in response to a
stimulus
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Formalizing Hebb’s Rule

O Consider a linear neuron: VvV = WTu = uTW
' dw
0 Basic Hebb Rule: T, e =uv (or w — w+&v)
t

0 What is the average effect of this
rule? dw
r,—=(w) =0Ow
O Q is the input correlation matrix: O = <uuT>
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Variants of Hebb’s Rule

0 Pure Hebb only increases synaptic weights (LTP)
© What about LTD?

0 Covariance rules:

dw

T g — (u -0, )v (But: LTD also for no input
t

and some output)

dw _ (But: LTD also for no output
r,—=u(v-60) -
dt v and some input)
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Next Class: Unsupervised Learning

00 Things to do:
< Finish Chapter 8 and Start Chapter 10
< Watch for the Last Homework (due May 24)
< Start mini-project
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