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Course Summary (thus far)

0 Neural Encoding
< What makes a neuron fire? (STA, covariance analysis)
< Poisson model

0 Neural Decoding
< Stimulus Discrimination based on firing rate
< Spike-train based decoding of stimulus
< Population decoding (Bayesian estimation)

0 Single Neuron Models
< RC circuit model of membrane
< Integrate-and-fire model
< Conductance-based and Compartmental Models
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Today’s Agenda

0 Computation in Networks of Neurons
< From spiking to firing-rate based networks
< Feedforward Networks
OE.g. Coordinate transformations in the brain
< Linear Recurrent Networks
OCan amplify inputs
OCan integrate inputs
OCan function as short-term memory
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Modeling Synaptic Inputs from
other Neurons

Synaptic
conductance

rmZ—I:——(V E)-rg(V-E)+IR

g. =g maXPr elP Probability of postsynaptic channel opening
(= fraction of channels opened)

Probability of transmitter release given an input splke
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Simplified Synapse Model

O “Alpha Function” model: K
; ot 11 ;
. T pea
Synaptic kernel K (¢) = e " IZL t
peak 0 Tpeak

Synaptic current: [ (1) = w, J.K(t -1)p,(T)dr

where o,(t) is the input spike train:
P(t) = Z;8(t-t;) (¢ are the spike times)
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Modeling Networks of Neurons

0 Option 1: Use spiking neurons (e.g. I & F neurons)
<@ Advantages: Allows computation and learning based on:
OSpike Timing
OSpike Correlations/Synchrony between neurons
< Disadvantages: Computationally expensive

00 Option 2: Use neurons with firing-rate outputs
< Advantages: Greater efficiency, scales well to large
networks
< Disadvantages: Ignores spike timing issues

0 Question: How are these two approaches related?
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Network Notation

output © — "
weights w
input  u

Current at I(H)=w,

[K(t=1)p,(r)dr  Spike train (1)
synapse b -

=w, I K(t-T1)u,(r)dt  Firing rate u,(t)

Total
synaptic [ (¢) = Z 1,()
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Synaptic Current Dynamics

L
ST

5

0O If synaptic kernel K is an exponential function: K(f)=e

t
Differentiating [ (¢) = Z w, IK(t —Du,(T)dT
PR

dl
Weget 7. —=-1 +Zwbuh
dt S5
=-/ +wlh
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Output Firing-Rate Dynamics

0 How is the output firing rate v related to synaptic inputs?
0 On-board derivations...

(see also pages 234-236 in the text)
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How good are the Firing Rate Models?
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Firing rate v(t) = F(I(t)) describes this well but not this case
Input I(t) = I, + I,cos(wxt) 0

L58858

R. Rao, CSE528: Lecture 9




Feedforward versus Recurrent Networks

A B
output v
|nput

r Y = v F(Wu M)

dt
Output  Decay Input Feedback

(For feedforward networks, matrix M = 0)
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The Problem of Coordinate Transformations

B F
A

C
s+¢ ,}:
5

g

g = gaze angle relative to body

s = stimulus or target angle relative to gaze (retinal coordinates)
s+g = stimulus relative to body

Same arm movement required in A and B but s and g are different

How does the brain solve this problem?
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Body-Based Representation in the Monkey

Head fixed

. Objects approaching
gaze shifted to g, g, g at different angles
1007 LI
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g 804
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o Same tuning curve regardless of
= 20 gaze angle

0 = Premotor cortex neuron responds

30-15 0 1530 4560 ¢ stimulus location relative to
$+g (deg) body, not retinal image location
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Body-Based Representation in the Monkey

When head is moved but
gaze remains unchanged:

100 h After head is moved 15°,
801 objects approaching at 15
50- ¥ in retinal image now elicit

the highest response =

40 Tuning curve in retinal
201 coordinates has shifted

O L] T T T T T U T
-45-30-15 0 15 30 45 60
s (deg)
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Suggested Feedforward Network

Output: Premotor Cortex Neuron with Body-Based Tuning Curves

output ©
weights w
input  u

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Input neurons exhibit gaze-dependent gain modulation
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Gaze-Dependent Gain Modulation
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What should the weights be?

Output: Premotor Cortex Neuron with Body-Based Tuning Curves

output v
weights w
input  u

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Weights w(&,y) need to be a function of &+y
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Output of a Simulated Feedforward Network
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Next Class: More on Networks

0 Things to do:
< Finish reading Chapter 7
< Homework #3 due next Tuesday
< Start working on mini-project
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