
1R. Rao, CSE528: Lecture 9

CSE/NEUBEH 528
Lecture 9: Computation by Networks

(Chapter 7)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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Course Summary (thus far)

✦ Neural Encoding
What makes a neuron fire? (STA, covariance analysis)
Poisson model

✦ Neural Decoding
Stimulus Discrimination based on firing rate
Spike-train based decoding of stimulus
Population decoding (Bayesian estimation)

✦ Single Neuron Models
RC circuit model of membrane
Integrate-and-fire model
Conductance-based and Compartmental Models
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Today’s Agenda

✦ Computation in Networks of Neurons
From spiking to firing-rate based networks
Feedforward Networks
➧ E.g. Coordinate transformations in the brain

Linear Recurrent Networks
➧ Can amplify inputs
➧ Can integrate inputs
➧ Can function as short-term memory
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other Neurons



5R. Rao, CSE528: Lecture 9

Flashback 2         Simplified Synapse Model

✦ “Alpha Function” model:
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where ρs(t) is the input spike train:

ρs(τ) = Σi δ(τ-ti)   (ti are the spike times)

Synaptic kernel
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Modeling Networks of Neurons

✦ Option 1: Use spiking neurons (e.g. I & F neurons)
Advantages: Allows computation and learning based on:
➧ Spike Timing
➧ Spike Correlations/Synchrony between neurons

Disadvantages: Computationally expensive

✦ Option 2: Use neurons with firing-rate outputs
Advantages: Greater efficiency, scales well to large 
networks
Disadvantages: Ignores spike timing issues

✦ Question: How are these two approaches related?
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Network Notation
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Synaptic Current Dynamics

✦ If synaptic kernel K is an exponential function:

Differentiating

We get
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Output Firing-Rate Dynamics

✦ How is the output firing rate v related to synaptic inputs?

✦ On-board derivations…

(see also pages 234-236 in the text)
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How good are the Firing Rate Models?

Firing rate v(t) = F(I(t)) describes this well but not this case
Input I(t) = I0 + I1cos(ωt)
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Feedforward versus Recurrent Networks

)MW( vuvv ++−= F
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(For feedforward networks, matrix M = 0)

Output Decay Input     Feedback
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The Problem of Coordinate Transformations

g = gaze angle relative to body
s = stimulus or target angle relative to gaze (retinal coordinates)
s+g = stimulus relative to body
Same arm movement required in A and B but s and g are different

How does the brain solve this problem?

Target
Gaze
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Body-Based Representation in the Monkey

Same tuning curve regardless of 
gaze angle

Premotor cortex neuron responds 
to stimulus location relative to 
body, not retinal image location

Head fixed
gaze shifted to g1   g2   g3

Objects approaching 
at different angles

14R. Rao, CSE528: Lecture 9

Body-Based Representation in the Monkey
When head is moved but
gaze remains unchanged:

After head is moved 15°, 
objects approaching at 15°

in retinal image now elicit 
the highest response 
Tuning curve in retinal 
coordinates has shifted
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Suggested Feedforward Network

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Input neurons exhibit gaze-dependent gain modulation

Output: Premotor Cortex Neuron with Body-Based Tuning Curves
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Gaze-Dependent Gain Modulation

Gaze 1

Gaze 2

Responses of Area 7a neuron Example of a gain-
modulated tuning curve

ξ = -20
γ = 20
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What should the weights be?

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Weights w(ξ,γ) need to be a function of ξ+γ

Output: Premotor Cortex Neuron with Body-Based Tuning Curves
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Output of a Simulated Feedforward Network

vss

g = -20°

g = 0°

g = +10°

Retinal tuning curves shift to 
compensate for g (i.e. stable for s + g)

Head fixed
gaze shifted to g1   g2   g3
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Next Class: More on Networks

✦ Things to do:
Finish reading Chapter 7
Homework #3 due next Tuesday
Start working on mini-project


