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1 An introduction to attribute grammars

Context-free grammars are used to specify the syntax of a language, but not its
semantics. Knuth [3] devised attribute grammars as a mechanism for including the
semantic rules of a language with its syntax. In an attribute grammar, each nonterminal
symbol in the context-free grammar is augmented with a set of attributes. These
attributes can represent just about any semantically meaningful concept, such as scalar
value, length, memory location, polarity, etc. In addition to the attributes, each
production rule is augmented with a set of semantic rules, which are evaluated to
determine the semantic value of a particular sentence in the grammar. There are two
types of attributes, synthesized and inherited. Synthesized attributes are determined by
following the parse tree from the bottom to the top (i.e. children nodes determine the
value of synthesized attributes in their parents). Inherited attributes are determined by
following the tree from top to bottom. In the example that follows, synthesized attributes
are notated with an up arrow (↑) and inherited attributes are notated with a down arrow
(↓). The example in figure 1 is an adaptation from Knuth [3]. The subscript numbers are
used only to denote different instances of the same nonterminal for explanatory purposes;
they are not actually different nonterminals.

0: Number� Sign List (i) List↓Scale := 0
(ii) Number↑Value := IF Sign↑Neg THEN -

List↑Value ELSE List↑Value
1: Sign� + (i) Sign↑Neg := False
2: Sign� - (i) Sign↑Neg := True
3: List� BinaryDigit (i) BinaryDigit↓Scale := List↓Scale

(ii) List↑Value := BinaryDigit↑Value
4: List0� List1 BinaryDigit (i) List1↓Scale := List0↓Scale + 1

(ii) BinaryDigit↓Scale := List0↓Scale
(iii) List0↑Value := List1↑Value +

BinaryDigit↑Value
5: BinaryDigit� 0 (i) BinaryDigit↑Value := 0
6: BinaryDigit� 1 (i) BinaryDigit↑Value := 2BinaryDigit↓Scale

Figure 1: A simple attribute grammar for signed binary numbers

Disregarding the semantic rules on the right, production rules zero to six define a
grammar that accepts strings of binary digits (such as +01010101, or –100001). The
added semantic rules actually compute the decimal value of the binary number. Notice
that just about any well-defined function can be used in the semantic rules. In this case



we are using a conditional operator (rule 0i), addition (rule 4i and 4iii) and
exponentiation (rule 6i). The semantic rules define the value of the synthesized attributes
for the left-hand side nonterminal and the inherited values for the right-hand side
nonterminals. For example, in rule zero the value attribute of number is set to the value
of the binary digit list, modified by the sign value. The easiest way to understand what is
going on in the parsing of a language using an attribute grammar is to look at the parse
tree decorated with the attribute values. Figure 2 shows a parse tree for the string –101
using the attribute grammar in figure 1.

Figure 2: Parse tree for –101 using attribute grammar from figure 1.

Ignore the filled in values of the attributes for a moment and consider the way one
would go about calculating them. Starting from the top, one would fill in the inherited
values down to the leaves and then start back up the tree filling in synthesized values. In
this case the first inherited attribute we run into is List0↓Scale, which is set to zero (from
rule 0i). The next two are List1↓Scale, which is set to one (from rule 4i), and
BinaryDigit0↓Scale, which is set to zero (from rule4ii). After that, List2↓Scale is set to
two (from rule 4i) and BinaryDigit1↓Scale is set to one (from rule 4ii). Finally,
BinaryDigit2↓Scale is set to two (from rule 4ii). At this point we know the scales of all
the binary digits, which allows us to calculate their actual values. Going back up the tree,
BinaryDigit0 is set to 20 (from rule 6i), BinaryDigit1 is set to zero (from rule 5i) and
BinaryDigit2 is set to 22 (from rule 6i). The value attributes then propagate through the
list nonterminals and up to number, where it is combined with the negative sign to give a
final value of –5.



2 The circularity problem for attribute grammars

In order for an attribute grammar to be well formed the attributes associated with
nonterminals at any node in the parse tree must be possible to evaluate using the semantic
rules for the grammar. Non-trivial context-free grammars can produce an infinite number
of trees, so the problem of determining their well-formedness is non-trivial. The
principal problem is circularities in the dependency graph between attributes. For
example, if an attribute a1 depends on a2, which in turn depends on a1, there is no way to
evaluate either a1 or a2. The best way to visualize this is to actually draw the dependency
graph for a grammar. Figure 3 shows such a graph for the attribute grammar in figure 1.

Figure 3: Attribute dependency graph for the grammar in figure 1.

The dependency graph is a combination of the individual dependencies from each
rule in the grammar (which is why there are multiple List↑Value attributes). This
particular graph has no circularities, which means that it is well formed (i.e. all possible
parse trees generated by the grammar can be interpreted by the semantic rules). A
circular dependency could be formed by reversing the arrow from Sign↑Neg to
Number↑Value and adding an arrow from Sign↑Neg to the lower List↑Value. At that
point any of the four attributes that made up the cycle would be impossible to evaluate.
The circularity problem for attribute grammars is the detection of such cycles in the
dependency graph of attributes.

3 Complexity of the circularity problem

Knuth [3] knew of the circularity problem and devised an algorithm that decided

it in O(2cn2
) steps. Jazayeri [1,2] was the first to prove that the problem was intractable

however. He came up with the following theorem.

THEOREM. The lower bound on the complexity of the circularity problem for
attribute grammars is 2cn/logn, where n is the size of the grammar description. That is,
there is a constant c >0 such that any correct algorithm must run for 2cn/logn steps for
infinitely many n’s.

The original proof of this theorem in [1] used a reduction from the recognition
problem for writing pushdown acceptors. The manipulation of the stack caused this
particular proof to be very complicated. A second paper by Jazayeri [2] gave a much
simpler, more elegant version of the proof using alternating Turing machines. More



specifically, the acceptance problem for alternating Turing machines was reduced to the
circularity problem for attribute grammars. The acceptance problem is known to take
exponential time in terms of deterministic Turing machines. Jazayeri gave a reduction
that takes a machine M with input w and produces a grammar G(M,w) such that M
accepts w iff G(M,w) is circular.

The key insight used by Jazayeri in his proof was that alternating Turing
machines have a very natural correspondence with grammars. In particular, existential
states can be used to select between different alternatives for a nonterminal expansion,
and universal states can be used to evaluate a single right-hand side for a nonterminal.
The reduction creates a nonterminal in the grammar for each state in M. The set of
attributes associated with each nonterminal in the parse tree corresponds to the
configuration of M at that step in the computation. In this way the grammar is used to
simulate the action of the alternating Turing machine. The whole trick of the proof was
designing the attributes so that reaching an accepting state corresponded to creating a
dependency in the attribute graph. Jazayeri accomplished this using a very simple
language (Σ = {a,b}) and carefully constraining the number of attributes available to each
nonterminal so at least one had to be repeated. The reduction shows that the circularity
problem is at least as complex as the acceptance problem, which is exponential in the size
of the input.
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