CSE 531 - A CFG to generate u#v such that
u does not yield v

October 19, 2000
Kaustubh Deshmukh

In these notes we define a Context Free Grammar (CFG) for generating
strings of the form u#w, such that u does not yield v because something
goes wrong'. This CFG was used in the reduction of Ay to the Everything
Problem for CFGs.

Given a Turing Machine M = (@, %, T, 6, ¢o, a, ¢r), We want to generate all
strings of the form u#w such that u does not yield v. For simplicity we make
the assumption that M never tries to move its head of the left end of the
tape. Let A =T'U Q. All valid configurations are strings in A. Firstly we
define a partial function Fj; : A* — A as defined in class, as follows:

Fuy(a,b,c,d) =e

1. ifa,b,c € T, then e = b
2. if a € Q, then
(a) 6(a,b) = (p, f,R) = e=p
(b) 6(a,b)=(p,f, L) =>e=f
3. if b € Q, then
(a) 6(b,c)=(p,f,R) =e=f
(b) 6(b,c)=(p,f,L)y=e=ua
4. if ¢ €), then
(a) 6(c,d)=(p,f,R)=e=1D
(b) 6(c,d) =(p,f, L) = e=p

!The “something goes wrong” stands for the fact that a string of the form u#wz will
not be generated, where |u| = |w| and u yields w. Such strings are generated by “lengths
wrong” CFG.

This function determines which character will occur in the place of b in the
yielded configuration, by looking at a window of four characters. We say
that a, b, ¢, d yields e.

We define the grammar Gy, = (V, A’, R, S) as follows:

V consists of the non-terminals S, C, F and B(®®%% Vg b ¢, d € A.
A= AU{#)

S is the start symbol.

The rules are defined as follows:

1. S — Bbad e Va,b,c,d,e € A such that F(a,b,c,d) # e
2. S — F

3. Bl@bed . g plabed), Vz,y € A

4. Blbed) o abedCH#zx Ve e A

5. F — bedC#eC Vb, c,d,e € A such that F(L,b,c,d) # e
6. C — ¢| aC Ve e A

The grammar works as follows:

The first rule first introduces an anomaly that cannot occur for a yield to
work correctly. That is, if e is the (n + 1) symbol in v then rule 1 will
ensure that a,b, c,d, which will start at position n in u, do not yield e, as
F(a,b,c,d) # e. Rule 3 inserts (n — 1) characters at the beginning of both
uw and v. Rule 4 puts the characters a, b, c,d in the n'® position in u. The
extra x is to ensure that e will occur in the (n + 1)™ position in v, which is
the same position in which b occurs in u.

In the above description e could never occur in the first position of v. That
is, we could not generate strings where u does not yield v only because the
first character of v is wrong. To accommodate this, we have added rules 2
and 5. Rule 5 ensures that b, c,d and e are the initial characters of v and v
respectively, and that e is the wrong character as F(L,b,c,d)? # e.

Hence the grammar G, generates all strings of the form u#v where u does
not yield w because something goes wrong.

2Any character in ' could be used as a to capture the effect of F in the case bed is the
initial part of u. This can easily be seen from the definition of F. The blank is used just
for convenience.

