Instructions: Same as Problem Set 1.

- 1. Prove that $\mathsf{LOGSPACE} \neq \mathsf{TIME}(n^2)$.
- 2. Prove that every language in BPP has a circuit family of polynomial size that decides it. (<u>Hint</u>: Use the amplification lemma to reduce the error on input x to less than $2^{-|x|}$. Then try to "hardwire" the randomness into the circuit.)
- 3. Prove that if $\mathsf{PH} = \mathsf{PSPACE}$, then the polynomial time hierarchy has only finitely many distinct levels, i.e., $\mathsf{PH} = \Sigma_k^P$ for some $k \ge 1$.
- 4. Define $UNIQUESAT = \{ \langle \phi \rangle \mid \phi \text{ is a CNF formula that has a unique satisfying assignment} \}$. Prove that $UNIQUESAT \in \mathsf{P}^{SAT}$.
- 5. Prove that if $NP \subseteq BPP$, then NP = RP.
- 6. Prove that there exists an oracle C for which $NP^C \neq coNP^C$.