
CSE 531: Computability and Complexity Autumn 2004
Problem Set #4 Instructor: Venkatesan Guruswami
Due on Tuesday, November 30, 2004 in class.

Instructions: Same as Problem Set 1.
Readings: Chapter 8.

1. An unrestricted grammar (or a rewriting system) is a 4-tuple G = (V,Σ, R, S) where

• V is an alphabet;
• Σ ⊂ V is the set of terminal symbols, and V −Σ is called the set of nonterminal symbols;
• S ∈ V − Σ is the start symbol; and
• R, the set of rules, is a finite subset of (V ∗(V − Σ)V ∗)× V ∗.

(Thus the “only” difference from context-free grammars is that the left-hand sides of rules
need not consist of single nonterminals.) Let us write α → β if (α, β) ∈ R; and let’s define
u ⇒G v iff, for some w1, w2 ∈ V ∗ and some rule α → β ∈ R, u = w1αw2 and v = w1βw2. Let
∗⇒G denote the reflexive, transitive closure of ⇒G. We say that a string w ∈ Σ∗ is generated
by G if and only if S

∗⇒G w. Finally, L(G) ⊆ Σ∗, the language generated by G, is defined to
be the set of all strings in Σ∗ generated by G.

Now, define a context-sensitive grammar to be one for which whenever (x, y) ∈ R we have
|x| ≤ |y| (i.e., the right hand side of rules are at least as long as the left hand size). Now to
your exercises.

(a) Prove that the class of languages generated by context-sensitive grammars is precisely
NSPACE(n).
(Hint: The harder direction is to prove that languages in NSPACE(n) are context-
sensitive. For this, it might help to construct a grammar whose rules simulate backward
moves of M (for an arbitrary TM M), and whose derivations will consequently simulate
backward computations of M . This will show that unrestricted grammars can generate
any Turing recognizable language. Now see how the space restriction can be used to
argue that the grammar may be assumed to be context-sensitive.)

(b) Use the above to show that the acceptance problem for context-sensitive languages, i.e.,
the language

ACSG = {〈G, w〉 | G is a context-sensitive grammar that generates w}

is PSPACE-complete. (Recall that, in contrast, we showed that the corresponding lan-
guage ACFG for context-free grammars is in P. It can be shown that ACFG is in fact
complete for the class P, under logspace reductions.)

2. Given an integer matrix A ∈ Zm×n and an integer vector b ∈ Zm, the pair (A, b) is said to be
feasible if the system of linear inequalities Ax ≤ b has a solution x = 〈x1, x2, . . . , xn〉 ∈ Rn

over reals. Prove that the language

LINEAR-PROGRAMMING = {(A, b) | the pair (A, b) is feasible} ,

1

is P-hard under logspace reductions, i.e., show that for every language B ∈ P, we have
B ≤L LINEAR-PROGRAMMING.

Hint: First prove that the language

CIRCUIT-VAL = {(C, a) | circuit C evaluates to True on assignment a}

is P-hard under logspace reductions. (Our proof of Cook-Levin theorem from class should be
handy here.) Then give a logspace reduction from CIRCUIT-VAL to LINEAR-PROGRAMMING.

3. Problem 8.12, Sipser’s book. (Properly nested parantheses and brackets is in L)

4. We know that 3SAT is NP-complete, but 2SAT (satisfiability of 2CNF formulae) has a poly-
nomial time algorithm. In this exercise, your task is to pinpoint the complexity of 2SAT by
proving that 2SAT is NL-complete.

5. Problem 8.15, Sipser’s book (HAPPY-CAT is in P)
Hint: You can think about this problem directly, but if you are stuck, looking at Lemma
10.21 in the textbook might help.

6. This problem concerns branching programs which are described in Section 10.2 of Sipser’s
book. We briefly repeat the definition here. A branching program is a directed acyclic graph
where all nodes are labeled by variables, except for two output nodes labeled 0 or 1. The
nodes that are labeled by variables are called query nodes, each of which has two outgoing
edges, one labeled 0 and the other labeled 1. Both output nodes have no outgoing edges, and
one of the nodes of the branching program is designated the start node. A branching program
determines a Boolean function as follows. Take any assignment to the variables appearing on
its query nodes and, beginning at the start node, follow the path determined by taking the
outgoing edge from each query node according to the value assigned to the indicated variable
(i.e. take the 0-edge is the variable is 0 and 1-node if it is 1). Do this until one of the output
nodes is reached. The label of this output node is the output of the branching program on
that input.

Define a family of branching programs B = (B1, B2, B3, . . .) to be an infinite list of
branching programs. The n’th member Bn of the list is a branching program that has n
input variables x1, . . . , xn. Say that a family of branching programs decides a language
A ⊆ {0, 1}∗ if for every string a of some length j, a ∈ A iff Bj(a) = 1. Here Bj(a) denotes
the output of the branching program Bj when its j input variables x1, . . . , xj are set to the
values a1, . . . , aj .

Define the size of a branching program to be the number of nodes in it.

(a) Give a diagram representing the n’th branching program for even n in a family deciding
the language {w | w ∈ {0, 1}∗ and w has an odd number of 1’s}. Your branching program
should have size O(n) to receive full credit.

(b) Show that if A is a language in LOGSPACE, then A is decided by a family of branching
programs where the n’th member of the family has at most poly(n) nodes. (Essentially,
this shows that branching programs are to the class L what circuits are to the class P.)

7. ∗ (Optional Problem for Extra Credit) Define the language

CYCLE = {〈G〉 | G is an undirected graph that has some cycle} .

Prove that CYCLE ∈ LOGSPACE.

2

