
Lecture 2

Polynomial Time Hierarchy and Nonuniform
Complexity

April 1, 2004
Lecturer: Paul Beame
Notes: Ioannis Giotis

2.1 Definition

Recall the following definitions of relativized complexity classes.

Definition 2.1. For any language A define PA = {L(MA) |M ? is a polynomial-time oracle TM } and
NP

A = {L(MA) |M ? is a polynomial-time oracle NTM }.
For any complexity class C define PC =

⋃

A∈C
PA, NP

C =
⋃

A∈C
NP

A,

Definition 2.2. We define the classes in the polynomial-time hierarchy by

Σ0P = Π0P = ∆0P = P

∆i+1P = P
ΣiP

Σi+1P = NP
ΣiP

Πi+1P = coNP
ΣiP

Unwinding the definition we obtain some basic complexity classes.

∆1P = P
P = P

Σ1P = NP
P = NP

Π1P = coNP
P = coNP

∆2P = P
NP = P

SAT ⊇ coNP

Σ2P = NP
NP

Π2P = coNP
NP

An example language in PNP is the following, which is the difference between
{〈G, k〉 | G has a k-clique} and {〈G, k〉 | G has a (k + 1)-clique}.

EXACT-CLIQUE = {〈G, k〉| the largest clique in G has size k}

Observe that, since oracle TMs can easily flip the answers they receive from the oracle, PΣiP =
PΠiP,NP

ΣiP = NP
ΠiP, coNP

ΣiP = coNP
ΠiP

7

LECTURE 2. POLYNOMIAL TIME HIERARCHY AND NONUNIFORM COMPLEXITY 8

P

∩NP coNP

NP coNP

2∆ P

2 2Σ ∩ ΠP P

2Σ P 2Π P

3∆ P

…

Figure 2.1: The polynomial time hierarchy

Definition 2.3. The polynomial-time hierarchy PH =
⋃

k ΣkP =
⋃

k ΠkP

Probably the most important question about the polynomial-time hierarchy is given by the following
conjecture.

Conjecture 2.1. ∀k PH 6= ΣkP.

Note that this very natural conjecture generalizes the conjectures that P 6= NP, since if P = NP then
PH = P = Σ0P, and that NP 6= coNP, since in that case PH = NP = Σ1P. Several results in this
course will be conditional based on this conjecture, namely that some natural property will hold unless the
polynomial-time hierarchy PH collapses to some level, say ΣkP.

2.2 Alternative Characterization of the Hierarchy Classes

The following characterization of languages in ΣkP is useful for obtaining a simpler alternative characteri-
zation of PH.

Theorem 2.2. L ∈ Σi+1P if and only if there exists a language R ∈ ΠiP and polynomial p : N → N such
that L = {x| ∃p(|x|)y. (x, y) ∈ R}.

Proof. By induction. Base case i = 0 follows from the alternate characterization of NP: L ∈ NP ⇔ there
is some R ∈ P and polynomial p : N → N such that L = {x | ∃p(|x|)y. (x, y) ∈ R}

For the induction step, i > 0 let L ∈ Σi+1P. We will show how to build a certificate y and a relation
R ∈ ΠiP suitable for the characterization. By definition

L ∈ NP
ΣiP = NP

NP
Πi−1P

which is well-defined since i − 1 ≥ 0. This means that there is a polynomial-time oracle NTM M ? such
that if M ? is given an oracle for a ΣiP set A, L(MA) = L.

LECTURE 2. POLYNOMIAL TIME HIERARCHY AND NONUNIFORM COMPLEXITY 9

We consider the various parts of the computation on input x for L. M ? has nondeterministic moves so
part of the certificate y for x will consist of the nondeterministic moves of M ?; the certificate y will also
contain the values of all the answers that M ? receives from the oracle for A. Let these parts of y be ỹ. Given
ỹ in polynomial time we can check that the computation of M ? given the oracles answers could follow the
nondeterministic moves and accept.

The problem is that we don’t know if the oracle answers purported to be according to A are correct.
Given that the computation of M ? is consistent with ỹ, we have fixed the polynomially many oracle queries
z1 . . . , zm, say, that will be made to the oracle for A. The rest of the certificate y will be certificates that
each of the answers given for A on these strings is actually correct.

We can verify each of the yes answers to A as follows: By applying the inductive hypothesis to A there
exists a set R′ ∈ Πi−1P (and a polynomial q) such that

zi ∈ A⇔ ∃q(|x|)yi.(zi, yi) ∈ R′

If the answer to zi ∈ A is yes then we include this yi in the certificate y. Since R′ ∈ Πi−1P ⊆ ΠiP the
algorithm for R can simply check that (zi, yi) ∈ R′ for each query zi to A that is answered yes.

If the answer to whether or not zi ∈ A is no then zi ∈ A ∈ ΠiP. Thus the new ΠiP machine R will
check ỹ, yi if the answer was yes, and zi directly if the answer for zi was no.

Corollary 2.3. L ∈ Πi+1P if and only if there is a relation R ∈ Σi+1P and polynomial p : N → N such
that L = {x| ∀p(|x|)y. (x, y) ∈ R}.

Corollary 2.4. L ∈ ΣiP if and only if there is a polynomial-time computable set R and polynomial p : N →
N such that

L = {x| ∃p(|x|)y1∀
p(|x|)y2 · · ·Qyi. (x, y1, y2, . . . , yi) ∈ R}

where Q =

{

∃p(|x|) if i is odd,

∀p(|x|) if i is even.

2.2.1 Some ΣiP- and ΠiP-complete Problems

Definition 2.4. Define
ΣiTQBF = {〈ψ〉| ψ ∈ TQBF and the quantifiers of ψ are of the form

−→
∃ y1

−→
∀ y2 · · ·QykψQ};

i.e. there are k groups of alternating quantifiers beginning with ∃. Similarly we can define ΠiTQBF with k
groups of alternations beginning with ∀.

Theorem 2.5. For i ≥ 1, ΣiTQBF is ΣiP-complete and ΠiTQBF is ΠiP-complete.

Proof Sketch. We apply the characterizations of ΣiP and ΠiP from Corollary 2.4. The quantifiers match up
perfectly except that the polynomial-time computable set R has been replaced by a simple Boolean formula.
We cannot in general replace polynomial-time computation by Boolean formulas however, we can replace
it in a way that is similar to the tableau from Cook’s proof of the NP-completeness of SAT.

First suppose that the last quantifier for the complexity class is an ∃ quantifier. We can add additional
Boolean variables z that represent the internal states of the computation of R and create a formula ϕ such
that (x, y1, . . . , yi) ∈ R if and only if ∃zϕ(x, y1, . . . , yi, z). Since the last quantifier was already an ∃
quantifier we can append z to it and simulate the formula.

LECTURE 2. POLYNOMIAL TIME HIERARCHY AND NONUNIFORM COMPLEXITY 10

If the last quantifier for the complexity class is a ∀ quantifier then we use the same internal variables z
except that the formula for R is now ∀z(ϕ′(x, y1, . . . , yi, z) → ϕ′′(z)) where ϕ′ ensures that z is a correct
computation on input (x, y1, . . . , yi) and ϕ′′ ensures that z is accepting. In this case the ∀z merges with the
last ∀ in the alternation.

2.2.2 Hierarchy Collapse

Lemma 2.6. If ΣkP = ΠkP then PH = ΣkP ∩ ΠkP

Proof. We’ll show that assumption implies that Σk+1P = ΣkP which will suffice. Let A ∈ Σk+1P. There-
fore, there is some polynomial-time R and polynomial p such that

A = {x| ∃p(|x|)y1 ∀p(|x|)y2 · · ·Qyk+1. (x, y1, y2, . . . , yk+1) ∈ R
︸ ︷︷ ︸

}.

∈ ΠkP = ΣkP

Therefore there is some polynomial-time relation R′ and polynomial p′ such that A can be expressed as

A = {x| ∃p(|x|)y1∃
p′(|x|)y′1

︸ ︷︷ ︸
∀p′(|x|)y′2 · · ·Q

p′(|)y′k. (x, y1, y
′
1, y

′
2, . . . , y

′
k) ∈ R′}

∃p′′(|x|)(y1, y
′
1)

From which it follows that A ∈ ΣkP.

If this happens we say that PH collapses to the k-th level.

2.2.3 A Natural Problem in Π2P

Definition 2.5. Let MINCIRCUIT = {〈C〉| C is a circuit that is not equivalent to any smaller circuit}.

Note that 〈C〉 ∈ MINCIRCUIT ⇔ ∀〈D〉, size(D) < size(C),∃y s.t. D(y) 6= C(y) Thus MINCIRCUIT

is in Π2P. It is still open if it is in Σ2P or if it is Π2P-complete.

2.3 Non-uniform Complexity

The definitions of Turing machines yield finite descriptions of infinite languages. These definitions are uni-
form in that they are fixed for all input sizes. We now consider some definitions of non-uniform complexity
classes.

2.3.1 Circuit Complexity

Definition 2.6. Let Bn = {f | f : {0, 1}n → {0, 1}}. A basis Ω is defined as a finite subset of
⋃

n Bn.

Definition 2.7. A Boolean circuit over basis Ω is a finite directed acyclic graph C each of whose nodes is

• a source node labelled by either an input variable in {x1, x2, . . .} or constant ∈ {0, 1}, or

LECTURE 2. POLYNOMIAL TIME HIERARCHY AND NONUNIFORM COMPLEXITY 11

• a node of in-degree d > 0 labeled by a gate function g ∈ Bd ∩ Ω,

and which has one designated output node (gate). A circuit C has two natural measures of complexity, its
size, size(C), which is the number of gates in C and its depth, depth(C) which is the length of the longest
path from an input (source) to the output node of C .

Typically the elements of Ω we use are symmetric and unless otherwise specified we will assume the
so-called De Morgan basis Ω = {∧,∨,¬} ⊆ B1 ∪ B2.

Definition 2.8. C is defined on {x1, x2, . . . , xn} if its input variables are contained in {x1, x2, . . . , xn}. C
defined on {x1, x2, . . . , xn} computes a function f ∈ Bn in the obvious way.

Definition 2.9. A circuit family C is an infinite sequence of circuits {Cn}
∞
n=0 such that Cn is defined on

{x1, x2, . . . , xn}.

Circuit family C has size S(n), depth d(n), iff for each n

size(Cn) ≤ S(n)

depth(Cn) ≤ d(n).

Circuit family C decides or computes a language A ⊆ {0, 1}∗ iff for every input x ∈ {0, 1}∗, C|x|(x) =
1 ⇔ x ∈ A.

Definition 2.10. We say A ∈ SIZE(S(n)) if there exists a circuit family over the De Morgan basis of size
S(n) that computes A. Similarly we define A ∈ DEPTH(d(n)).

POLYSIZE =
⋃

k

SIZE(nk + k)

Our definitions of size and depth complexity classes somewhat arbitrarily care about constant factors.
For Turing machines we are stuck with them because alphabet sizes are variables but for circuits the com-
plexity does not involve such natural constant factors. (We may regret decision this later!)

Remark. ∃A ∈ POLYSIZE such that A is not decidable.

