
Lecture 3

Randomized Computation and the Polynomial-time
Hierarchy

April 4, 2004
Lecturer: Paul Beame

Notes: Ethan Phelps-Goodman

3.1 Undecidable Languages in POLYSIZE

By the proof of the Cook-Levin theorem we know that all languages in P have polynomial size circuits.
The converse is not true, however. In fact, there are languages with polynomial size circuits that are not
decidable. For example,

A = {1〈M,x〉 | Turing machine M halts on input x} ∈ SIZE(n)

where 1〈M,x〉 denotes the unary encoding of the binary representation of machine M and input x. The
construction of the circuit is as follows: Each input size corresponds to a particular machine and input.
If the machine would halt on this input, then the circuit consists of the AND of all input variables. If the
machine does not halt on the input then the circuit’s output gate is always 0. This seemingly strange situation
arises from the way we have defined circuit families. In particular, you are allowed to use an unbounded
amount of computation to construct each particular circuit. This property is called non-uniformity.

(In a uniform circuit family each circuit can be built (or the structure of the gates in its underlying
graph can be decided) in some small time-bounded or space-bounded class. There are different notions of
uniform circuit classes depending precisely on what notion is used. Common examples used are log-space,
or polynomial time.)

In fact, even constant-size circuits can decide undecidable languages: For example,

A = {x ∈ {0, 1}∗ | the |x|th TM M|x| halts on input 1|x|} ∈ SIZE(1).

3.2 Turing Machines with Advice

Last lecture introduced non-uniformity through circuits. An alternate view of non-uniformity uses Turing
machines with an advice tape. The advice tape contains some extra information that depends only on the
length of the input; i.e., on input x, the TM gets (x, α|x|).

Definition 3.1. TIME(T (n))/f(n) = {A | A is decided in time O(T (n)) by a TM with advice sequence
{αn}

∞
n=0 such that |αn| is O(f(n))}.

12

LECTURE 3. RANDOMIZED COMPUTATION AND THE POLYNOMIAL-TIME HIERARCHY 13

Now we can define the class of languages decidable in polynomial time with polynomial advice:

Definition 3.2. P/poly =
⋃

k,l TIME(nk)/nl

Lemma 3.1. P/poly= POLYSIZE

Proof.
POLYSIZE ⊆ P/poly: Given a circuit family in POLYSIZE, produce a TM with advice M that interprets
its advice string as the description of a circuit and evaluates that circuit on the input. Use {〈cn〉}

∞
n=0 as the

advice strings. These are polynomial size and the evaluation is polynomial time.

P/poly ⊆ POLYSIZE: Given a TM M and a sequence of advice strings {αn}
∞
n=0, use the tableau construc-

tion from the proof of the Cook-Levin Theorem to construct a polynomial-size circuit family with the advice
strings hard-coded into the input.

Typically, people tend to use the equivalent P/poly rather than POLYSIZE to describe the complexity
class since it emphasizes the fact that it is the natural non-uniform generalization of P.

3.3 Probabilistic Complexity Classes

Definition 3.3. A probabilistic Turing machine is an NTM where each configuration has exactly one or two
legal next moves. Steps with two moves are called coin flip steps. By viewing each such step as the flip of
a fair coin we define the probability of a branch b being executed is Pr[b] = 2−k, where k is the number of
coin flip steps along branch b. Then we define the probability of acceptance as:

Pr[M accepts w] =
∑

branches b on which M accepts w

Pr[b]

and Pr[M rejects w] = 1 − Pr[M accepts w].

Probabilistic TMs can also be viewed as ordinary multi-tape TMs with an extra read-only coin flip tape.
If r is the string of coin flips and machine M runs in time T (n) then |r| ≤ T (n). Now we can write the
answer of M on x as a function M(x, r) which equals 1 if M accepts x given random string r.

We can now define probabilistic complexity classes.

Definition 3.4. Randomized Polynomial Time: A language A ∈ RP iff there exists a probabilistic polyno-
mial time TM M such that for some ε < 1,

1. ∀w ∈ A, Pr[M accepts w] ≥ 1 − ε.

2. ∀w /∈ A, Pr[M accepts w] = 0.

The error, ε, is fixed for all input size. RPis the class of problems with one-sided error (ie. an accept
answer is always correct, whereas a reject may be incorrect.) We can also define coRP, which has one-sided
error in the other direction. The following class encompasses machines with two-sided error:

Definition 3.5. Bounded-error Probabilistic Polynomial Time: A language A ∈ BPP iff there exists a
probabilistic TM M running in polynomial time such that for some ε < 1/2:

LECTURE 3. RANDOMIZED COMPUTATION AND THE POLYNOMIAL-TIME HIERARCHY 14

1. ∀w ∈ A, Pr[M accepts w] ≥ 1 − ε

2. ∀w /∈ A, Pr[M rejects w] ≥ 1 − ε

We will slightly abuse notation and conflate languages and their characteristic functions; i.e., for a
language A,

A(w) =

{

1 if w ∈ A

0 if w /∈ A.

Using this we can say that A ∈ BPP iff there is some probabilistic polynomial-time TM M such that

Pr[M(w, r) = A(w)] ≥ 1 − ε.

We will also define a zero-sided error complexity class:

Definition 3.6. Zero-error Probabilistic Polynomial Time: ZPP = RP ∩ coRP

The motivation for this terminology is the following lemma.

Lemma 3.2. If A ∈ ZPP then there is a probabilistic TM M such that L(M) = A and the expected running
time of M is polynomial.

Proof. Let M1 be an RP machine for A, and M2 be a coRP machine for A; i.e., an RP machine for A. M
repeatedly runs M1 and M2 alternately until one accepts. If M1 accepts, then accept. If M2 accepts then
reject. Let ε = max{ε1, ε2}. We expect to have to run 1

1−ε trials before one accepts. Thus M decides A in
polynomial expected time.

The last probabilistic complexity class is much more powerful:

Definition 3.7. Probabilistic Polytime: A ∈ PP iff there is a probabilistic polynomial time TM M such that

Pr[M(w, r) = A(w)] > 1/2.

Here the error is allowed depend on the input size and be exponentially close to 1/2.

Remark. Running a polynomial time experiment using a machine witnessing that A ∈ PP will in general
not be enough to tell whether or not an input x ∈ A or not because the difference between acceptance and
rejection probabilities may be exponentially close to 1.

3.4 Amplification

The following lemma shows that in polynomial time we can reduce errors that are polynomially close to 1/2
to exponentially small values.

Lemma 3.3. Let M be a probabilistic TM with two-sided error ε = 1/2 − δ running in time T (n). Then
for any m > 0 there is a probabilistic polytime TM M ′ with runtime at most O(m

δ2 T (n)) and error at most
2−m.

LECTURE 3. RANDOMIZED COMPUTATION AND THE POLYNOMIAL-TIME HIERARCHY 15

Proof. M ′ simply runs M some number k times on independently chosen random strings and takes the
majority vote of the answers. For convenience we assume that k is even. The error is:

Pr[M ′(x) 6= A(x)] = Pr[≥ k/2 wrong answers on x]

=

k/2
∑

i=0

Pr[k/2 + i wrong answers of M on x]

≤

k/2
∑

i=0

(

k

k/2 + i

)

εk/2+i(1 − ε)k/2−i

≤

k/2
∑

i=0

(

k

k/2 + i

)

εk/2(1 − ε)k/2 since ε ≤ 1 − ε for ε ≤ 1/2

≤ 2kεk/2(1 − ε)k/2

= [4(1/2 − δ)(1/2 + δ)]k/2

= (1 − 4δ2)k/2

≤ e−2δ2k since 1 − x ≤ e−x

≤ 2−m for k = m/δ2.

A similar approach can be used with an RP language, this time accepting if any of the k trials accept.
This gives an error of εk, where we can choose k = m

log(1
ε
)
.

3.5 Randomness vs. Advice

The following theorem show that randomness is no more powerful than advice in general.

Theorem 3.4 (Gill, Adleman). BPP ⊆ P/poly

Proof. Let A ∈ BPP. By the amplification lemma, there exists a BPP machine M for A and a polynomial
bound p such that for all x ∈ {0, 1}n ,

Pr
r∈{0,1}p(n)

[M(x, r) 6= A(x)] ≤ 2−2n

For r ∈ {0, 1}p(n) say that r is bad for x iff M(x, r) 6= A(x). Therefore, for all x ∈ {0, 1}n,

Pr
r

[r is bad for x] ≤ 2−2n

We say that r is bad if there exists an x ∈ {0, 1}n such that r is bad for x.

Pr[r is bad] = Pr[∃x ∈ {0, 1}n. r is bad for x]

≤
∑

x∈{0,1}n

Pr[r is bad for x]

≤ 2n2−2n

< 1.

LECTURE 3. RANDOMIZED COMPUTATION AND THE POLYNOMIAL-TIME HIERARCHY 16

Thus Pr[r is not bad] > 0. Therefore there must exist an rn ∈ {0, 1}p(n) such that rn is not bad. Apply
this same argument for each value of n and use this sequence {rn}

∞
n=0 as the advice sequence to a P/poly

machine that decides A. Each advice string is a particular random string that leads to a correct answer for
every input of that length.

3.6 BPP and the Polynomial Time Hierarchy

Here we show that randomness ican be simulated by a small amount of alternation.

Theorem 3.5 (Sipser-Gacs, Lautemann). BPP ⊆ Σ2P ∩ Π2P.

Proof. Note that BPP is closed under complement; so, it suffices to show BPP ⊆ Σ2P .
Let A ∈ BPP. Then there is a probabilistic polytime TM M and polynomial p such that for x ∈ {0, 1}n,

Pr
r∈{0,1}p(n)

[M(x, r) 6= A(x)] ≤ 2−n.

Define AccM (x) = {r ∈ {0, 1}p(n) | M(x, r) = 1}. In order to determine whether or not x ∈ A we need
to determine whether the set S = AccM (x) is large (nearly all of {0, 1}p(n)) or small (only an exponentially
small fraction of {0, 1}p(n)).

The basic idea of the method we use is the following: If a set S contains a large fraction of {0, 1}p(n

then a small number of “translations” of S will cover {0, 1}p(n). If S is a very small fraction of {0, 1}p(n)

then no small set of “translations” of S will suffice to cover {0, 1}p(n) .

The translation we will use is just bitwise exclusive or, ⊕. We will use the following invertibility property
of ⊕: for s ∈ {0, 1}m , t ∈ {0, 1}m ,

b = s ⊕ t ⇐⇒ t = s ⊕ b

For S ⊆ {0, 1}m , define S ⊕ t = {s ⊕ t|s ∈ S}. Note that |S ⊕ t| = |S|.

Lemma 3.6 (Lautemann’s Lemma). Let S ⊆ {0, 1}m . If |S|/2m ≥ 1/2 then there exist t1 . . . tm ∈
{0, 1}m such that,

⋃m
j=1(S ⊕ tj) = {0, 1}m .

Thus the number of translations required is only linear in the number of bits in the size of the universe
from which S is chosen.

Proof. By probabilistic method. Let S satisfy the conditions of the lemma.

Fix a string b ∈ {0, 1}m . Choose t1 . . . tm uniformly and independently at random from {0, 1}m. For
any j ∈ {1, . . . ,m},

Pr[b ∈ S ⊕ tj] = Pr[tj ∈ S ⊕ b]

= Pr[tj ∈ S] since |S ⊕ tj| = |S|

≥ 1/2.

Therefore Pr[b /∈ S ⊕ tj] < 1/2. Thus, by independence, the probability that b is not in any of the m
translations

Pr[b /∈

m
⋃

j=1

(S ⊕ tj)] < 2−m.

LECTURE 3. RANDOMIZED COMPUTATION AND THE POLYNOMIAL-TIME HIERARCHY 17

Thus

Pr[∃b ∈ {0, 1}m. b /∈

m
⋃

j=1

(S ⊕ tj)] < 2m2−m = 1,

and so

Pr[∀b ∈ {0, 1}m. b ∈

m
⋃

j=1

(S ⊕ tj)] > 0.

Therefore there exists a set t1 . . . tm such that the union of the translations of S by ti covers all strings in
{0, 1}m .

Now apply Lautemann’s Lemma with S = AccM (x) and m = p(n). If x /∈ A then only a 2−n fraction
of the random strings will be in AccM (x), and so m = p(n) translations will not be able to cover all of
{0, 1}p(n) . This gives us the following Σ2P characterization of A:

x ∈ A ⇐⇒ ∃t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∀p(|x|)r there is some j ∈ {1, . . . , p(|x|)} such that M(x, r⊕tj) = 1.

Note that there are only polynomial many j values to be checked, so these can be checked directly by the
machine in polynomial time.

