
Lecture 4

Circuit Complexity and the Polytime Hierarchy

April 8, 2004
Lecturer: Paul Beame

Notes: Ashish Sabharwal

So far we have seen that circuits are quite powerful. In particular, P/poly contains undecidable problems,
and RP ⊆ BPP ⊆ P/poly. In this lecture, we will explore this relationship further, proving results that show
circuits are very unlikely to be super-powerful compared to uniform complexity classes.

Theorem 4.1. A. (Shannon, 1949) “Most” Boolean functions f : {0, 1}n → {0, 1}, have circuit com-
plexity SIZE(f) ≥ 2n

n
− φn, where φn is o

(
2n

n

)
. (More precisely, for any ε > 0 this holds for at least

a (1− ε) fraction of all Boolean functions.)

B. (Lupanov, 1965) Every Boolean function f : {0, 1}n → {0, 1} can be computed in SIZE(f) ≤
2n

n
+ θn, where θn is o

(
2n

n

)
.

Proof. A. The proof is a by a counting argument. Let Bn = {f : {0, 1}n → {0, 1}}, that is, the set of
all Boolean functions on n bits. |Bn| = 22n

. We will show that the number of circuits of size much
smaller than 2n/n is only a negligible fraction of |Bn|, proving the claim.

Let us compute the number of circuits of size at most S ≥ n+2 over {¬,∧,∨}. Note that the argument
we present works essentially unchanged for any complete basis of gates for Boolean circuits. What
does it take to specify a given circuit? A gate labeled i in the circuit is defined by the labels of its two
inputs, j and k (j = k for unary gates), and the operation g the gate performs. The input labels j and
k can be any of the S gates or the n inputs or the two constants, 0 and 1. The operation g can be any
one of the three Boolean operations in the basis {¬,∧,∨}. Adding to this the name i of the gate, any
circuit of size at most S can be specified by a description of length at most (S + n + 2)2S3SS. Note,
however, that such descriptions are the same up to the S! ways of naming the gates. Hence, the total
number of gates of size at most S, noting that S! ≥ (S/e)S , is at most

(S + n + 2)2S3SS

S!
≤

(S + n + 2)2S(3e)SS

SS

=

(
S + n + 2

S

)S

(3e (S + n + 2))S S

=

(

1 +
n + 2

S

)S

(3e (S + n + 2))S S

≤
(

e
n+2

S 3e (S + n + 2)
)S

S since 1 + x ≤ ex

< (6e2S)S+1 since we assumed S ≥ n + 2.

18

LECTURE 4. CIRCUIT COMPLEXITY AND THE POLYTIME HIERARCHY 19

To be able to compute at least an ε fraction of all functions in Bn, we need

(6e2S)S+1 ≥ ε 22n

⇒ (S + 1) log2(6e
2S) ≥ 2n − log2(1/ε)

⇒ (S + 1)(5.5 + log2 S) ≥ 2n − log2(1/ε)

Hence, we must have S ≥ 2n/n − φn where φn is o(2n/n) to compute at least an ε fraction of all
functions in Bn as long as ε is 2−o(2n). This proves part A of the Theorem.

B. Proof of this part is left as an exercise (see Problem 3, Assignment 1). Note that a Boolean function
over n variables can be easily computed in SIZE(n2n) by using its canonical DNF or CNF represen-
tation. Bringing it down close to SIZE(2n/n) is a bit trickier.

This gives a fairly tight bound on the size needed to compute most Boolean functions over n variables.
As a corollary, we get a circuit size hierarchy theorem which is even stronger than the time and space
hierarchies we saw earlier; circuits can compute many more functions even when their size is only roughly
doubled.

Corollary 4.2 (Circuit-size Hierarchy). For any ε > 0 and S1, S2 : N → N, if n ≤ (2 + ε)S1(n) ≤
S2(n)� 2n/n, then SIZE(S1(n)) (SIZE(S2(n)).

Proof. Let m = m(n) be the maximum integer such that S2(n) ≥ (1 + ε/2) 2m/m. By the preconditions
of the Corollary, S1(n) ≤ (1 − ε/2) 2m/m and m � n. Consider the set F of all Boolean functions on
n variables that depend only on m bits of their inputs. By the previous Theorem, all functions in F can be
computed by circuits of size 2m/m + o(2m/m) and are therefore in SIZE(S2(n)). On the other hand, most
of the functions in F cannot be computed by circuits of size 2m/m − o(2m/m) and are therefore not in
SIZE(S1(n)).

The following theorem, whose proof we will postpone until the next lecture, shows that circuits can
quite efficiently simulate uniform computation. Its corollaries will be useful in several contexts.

Theorem 4.3 (Pippenger-Fischer, 1979). If T (n) ≥ n, then TIME(T (n)) ⊆
⋃

c SIZE(cT (n) log2 T (n)).

We now show that although P/poly contains undecidable problems, it is unlikely to contain even all
of NP. This implies that circuits, despite having the advantage of being non-uniform, may not be all that
powerful. We start with a simple exercise:

Theorem 4.4 (Karp-Lipton). If NP ⊆ P/poly, then PH = Σ2P ∩Π2P.

The original paper by Karp and Lipton credits Sipser with sharpening the result. The proof below which
uses the same general ideas in a slightly different way is due to Wilson.

Proof. Suppose to the contrary that NP ⊆ P/poly. We’ll show that this implies Σ2P = Π2P. From
Lemma 2.6 this will prove the Theorem.

Let L ∈ Π2P. Therefore there exists a polynomial-time computable set R and a polynomial p such that
L =

{
x | ∀p(|x|)y ∃p(|x|)z. (x, y, z) ∈ R

}
. The idea behind the proof is as follows. The inner relation in this

definition,
{
(x, y) | ∃p(|x|)z. (x, y, z) ∈ R

}
, is an NP language. NP ⊆ P/poly implies that there exists a

LECTURE 4. CIRCUIT COMPLEXITY AND THE POLYTIME HIERARCHY 20

polynomial size circuit family {CR} computing this inner relation. We would like to simplify the definition
of L using this circuit family. by

{

x | ∃〈CR〉 ∀
p(|x|)y. CR correctly computes R on (x, y) and CR(x, y) = 1

}

.

This would put L in Σ2P, except that it is unclear how to efficiently verify that CR actually computes
the correct inner relation corresponding to R. (Moreover, the whole circuit family may not have a finite
specification.)

To handle this issue, we modify the approach and use self-reduction for NP to verify correctness of the
circuit involved. More precisely, we create a modified version of R suitable for self-reduction. Let

R′ =
{

(x, y, z′) | |z′|, |y| ≤ p(|x|) and ∃p(|x|)−|z′|z′′. (x, y, z′, z′′) ∈ R
}

.

Here z′ acts as a prefix of z in the earlier definition of R. Note that R′ ∈ NP since R is polynomial-time
computable. Therefore, by the assumption NP ⊆ P/poly, R′ is computed by a polynomial size circuit
family {Cn}

∞
n=0 with a polynomial size bound q : N → N. We, of course, can’t encode the whole circuit

family for showing L ∈ Σ2P. We use the fact that on input x, we only query R′ on inputs (x, y, z) of length
at most 2(|x|+ 2p(|x|)), say, assuming some reasonable encoding of the tuples.

Let Cpref ,|x| be the smallest prefix of {Cn}n that contains circuits corresponding to all input sizes that
are queried. The size of this is bounded some polynomial q ′ that involves the composition of p and q. We
claim that there exists a polynomial-time algorithm M that given x, y and Cpref ,|x| as input, either

a. outputs a z such that (x, y, z) ∈ R, in which case there exists a z satisfying this property, or

b. fails, in which case either Cpref ,|x| is not a prefix of {Cn}
∞
n=0 for computing the NP set R′, or no such

z exists.

We prove the claim by describing an algorithm M that behaves as desired. It will be clear that M runs in
polynomial time.

Algorithm M : On input x, y, Cpref ,|x|,
Let z′ be the empty string
If Cpref ,|x|(x, y, z′) = 0 then fail
While (x, y, z′) 6∈ R and |z′| ≤ p(|x|)

If Cpref ,|x|(x, y, z′0) = 1
then z′ ← z′0
else z′ ← z′1

EndIf
EndWhile
If (x, y, z′) ∈ R

then output z′

else fail
EndIf

End

Given M satisfying the conditions of our claim above, we can characterize the language L as follows:
x ∈ L iff ∃q′(|x|)〈Cpref ,|x|〉 ∀

p(|x|)y. Mdecision (x, y, 〈Cpref ,|x|〉). Here Mdecision denotes the decision version
of M that outputs true or false rather than z ′ or fail. Since M is polynomial-time computable, this shows
that L ∈ Σ2P. Note that we were able to switch ∃ and ∀ quantifiers because Cpref ,|x| doesn’t depend on y.

LECTURE 4. CIRCUIT COMPLEXITY AND THE POLYTIME HIERARCHY 21

This proves that Π2P ⊆ Σ2P. By the symmetry between Σ2P and Π2P, this implies Σ2P ⊆ Π2P,
making the two classes identical and finishing the proof.

The following exercise uses the same kind of self reduction that we employed in the above argument:

Exercise 4.1. Prove that NP ⊆ BPP implies NP = RP.

We now prove that even very low levels of the polynomial time hierarchy cannot be computed by circuits
of size nk for any fixed k. This result, unlike our previous Theorem, is unconditional; it does not depend
upon our belief that the polynomial hierarchy is unlikely to collapse.

Theorem 4.5 (Kannan). For all k, Σ2P ∩Π2P 6⊆ SIZE(nk).

Proof. We know that SIZE(nk) (SIZE(nk+1) by the circuit hierarchy theorem. To prove this Theorem,
we will give a problem in SIZE(nk+1) and Σ2P ∩Π2P that is not in SIZE(nk).

For each n, let Cn be the lexically first circuit on n inputs such that size(Cn) ≥ nk+1 and Cn is minimal;
i.e., Cn is not equivalent to a smaller circuit. (For lexical ordering on circuit encodings, we’ll use ≺.) Let
{Cn}

∞
n=0 be the corresponding circuit family and let A be the language decided by this family. By our choice

of Cn, A 6∈ SIZE(nk). Also, by the circuit hierarchy theorem, size(A) is a polynomial ≤ (2 + ε)nk+1 and
the size of its encoding |〈A〉| ≤ nk+3, say. Note that the factor of (2 + ε) is present because there may not
be a circuit of size exactly nk+1 that computes A, but there must be one of size at most roughly twice this
much.

Claim: A ∈ Σ4P.
The proof of this claim involves characterizing the set S using a small number of quantifiers. By definition,
x ∈ A if and only if

∃p(|x|)〈C|x|〉.
(
size(C|x|) ≥ |x|

k+1
∧
∀p(|x|)〈D|x|〉. [size(D|x|) < size(C|x|)→ ∃

|x|y. D|x|(y) 6= C|x|(y)]
∧
∀p(|x|)〈D|x|〉. [[(〈D|x|〉 ≺ 〈C|x|〉) ∧ (size(D|x|) ≥ |x|

k+1)]→

∃p(|x|)〈E|x|〉. [size(E|x|) < size(D|x|) ∧ ∀
|x|z. D|x|(z) = E|x|(z)]]

)

The second condition states that the circuit is minimal, i.e., no smaller circuit D |x| computes the same
function as C|x|. The third condition enforces the lexically-first requirement; i.e., if there is a lexically-
earlier circuit D|x| of size at least |x|k+1, then D|x| itself is not minimal as evidenced by a smaller circuit
E|x|. When we convert this formula into prenex form, all quantifiers, being in positive form, do not flip. This

gives us that x ∈ A iff ∃〈C|x|〉
︸ ︷︷ ︸

∀〈D|x|〉
︸ ︷︷ ︸

∃|x|y ∃〈E|x|〉
︸ ︷︷ ︸

∀|x|z
︸︷︷︸

. φ for a certain quantifier free polynomially

decidable formula φ. Hence A ∈ Σ4P.

This proves the claim and imples that Σ4P 6⊆ SIZE(nk). We finish the proof of the Theorem by analyz-
ing two possible scenarios:

a. NP ⊆ P/poly. In this case, by the Karp-Lipton Theorem, A ∈ Σ4P ⊆ PH = Σ2P∩Π2P because the
polynomial time hierarchy collapses, and we are done.

b. NP 6⊆ P/poly. In this simpler case, for some B ∈ NP, B 6∈ P/poly. This implies B 6∈ SIZE(nk)
and proves, in particular, that Σ2P ∩Π2P 6⊆ SIZE(nk).

This finishes the proof of the Thoerem. We note that unlike the existential argument (the witness is
either the language A or the language B), one can also define a single language A ′ witnessing it where A′

is a hybrid language between A and a diagonal language in NP.

