
Lecture 5

Circuit Complexity / Counting Problems

April 12, 2004
Lecturer: Paul Beame

Notes: William Pentney

5.1 Circuit Complexity and Uniform Complexity

We will conclude our look at the basic relationship between circuit complexity classes and uniform complex-
ity classes. First, we will prove that circuits can efficiently solve problems in uniform complexity classes.

Theorem 5.1 (Pippenger, Fischer). If T (n) ≥ n, then TIME(T (n)) ⊆
⋃

SIZE(kT (n) log2 T (n)).

First, consider the following variant of the traditional k-tape TM:

Definition 5.1. A multitape TM is oblivious if the motion of each head depends only upon the length of its
input.

Note that an oblivious TM’s motion has nothing to do with the input itself; given an input of size n, the
machine’s head(s) will perform the same series of motions regardless of the original contents of the tape.
We will prove two lemmas from which Theorem 5.1 follows immediately.

The first is a more careful version of the original result of Hennie and Stearns showing that k-tape
TMs can be efficiently simulated by 2-tape TMs. The key extension is that the resulting TM can be made
oblivious.

Lemma 5.2 (Hennie-Stearns, Pippenger-Fischer). For T (n) ≥ n, if A ∈ TIME(T (n)) then A is recog-
nized by a 2-tape deterministic oblivious TM in time O(T (n) log T (n)).

The second lemma shows that oblivious TMs can be efficiently simulated by circuits.

Lemma 5.3. [Pippenger-Fischer] If A ⊆ {0, 1}∗ is recognized by a 2-tape deterministic oblivious TM in
time O(T (n)), then A ∈

⋃
k SIZE(kT (n)) (i.e. size linear in T (n).

First we will prove Lemma 5.3 whose proof motivates the notion of oblivious TMs.

Proof of Lemma 5.3. Consider the tableau generated in the standard proof of the Cook-Levin theorem for
an input of size n for a Turing machine running in O(T (n). The tableau yields a circuit of size O(T 2(n)),
with “windows” of size 2 × 3. However, on any given input the TM head will only be in one cell at a given
time step; i.e., one cell per row in the tableau. With a normal TM, though, it is not possible to anticipate
which cell that will be.

22

LECTURE 5. CIRCUIT COMPLEXITY / COUNTING PROBLEMS 23

= position of TM head

... ...

... 11 11 1 10 0 0 0

... 11 111 1 10 0 0 0

...

...

...

0 0 0 1 1 1 1

1

1

1

1

1 1

1

0 0 0 0
0 0

0 0
0

00 0 0 0
1

110

0

0

0

1

....

0

0

1

0

1

0

0

Figure 5.1: Representing an oblivious TM using constant-size windows
.

Since our TM M is oblivious, we know the path that the head shall take, and where it will be at each
timestep, simply by knowing the length of the input. We know if and when a given cell on the tape will
be revisited, and can ignore it at other times. Thus we can use “windows” containing simply the contents
of a cell from the last time it was active and the contents of the previous cell visited to see what the head
moves, to represent each step taken by that head, and all other cells in the tableau will be irrelevant to that
step in the computation. This is represented in Figure 5.1. The subsequent configuration resulting from any
configuration can thus be computed by a circuit of constant size. Since the tableau is of height T (n), we can
express the tableau in size O(T (n)).

Now, we prove Lemma 5.2, that if A ∈ TIME(T (n)), then A is recognized by a 2-tape deterministic

LECTURE 5. CIRCUIT COMPLEXITY / COUNTING PROBLEMS 24

abcdef

g

h i j k l m

B B B B B
0 1 2 3 4

B B B B−1 −2 −3 −4

Figure 5.2: 4-track oblivious simulation of a TM tape.

abcde

i j k l m

B B B B B
0 1 2 3 4

B B B B−1 −2 −3 −4

f g

h

Figure 5.3: The simulation in Figure 5.2 when the head moves left. Block B1 is bunched and B−1 stretched.

and oblivious TM in time O(T (n) log T (n)).

Proof of Lemma 5.2. We will build a 2-tape TM M ′ which will consist of two tapes: one holding all the
contents of M ’s tapes, and one “work tape”.

Traditionally, we think of a TM as having a tape which the head moves back on forth on. For this proof,
it may help to instead think of the TM head as being in a fixed position and each of the tapes as moving
instead, similar to a typewriter carriage (if anyone remembers this ancient beasts!). Of course a tape would
be an infinitely long typewriter carriage which would be too much to move in a single step. Instead, we think
of moving the tapes back and forth, but we may not do so smoothly; sometimes we will be “bunching up”
a tape, such that some cells may be effectively layered on top of others and other parts will be “stretched”,
parts that are not bunched or stretched are “smooth”.

It will be convenient to concentrate on simulating one tape of M at a time. In reality we will allocate
several tracks on tape 1 of M ′ to each of the k-tapes. It is simplest also to imagine that each of M ’s tapes is
2-way infinite, although M ′ will have only 1-way infinite tapes.

More precisely, imagine the scenario modeled in Figure 5.2. For each tape of M , we have four tracks –
two for those cells to the left of the current cell, and two for those to the right of the current cell. The “outer”
tracks will contain the contents of the tape when that portion of the tape is smooth; the “inner” tracks will
contain portions of the tape that are bunched up. The current cell is always on the left end of the set of
tracks. The tracks wrap around as the head of M moves.

We will divide the tracks into “blocks”, where each block will consist of a portion of the two upper or
lower tracks. Block B0 contains the current cell (at the left end of the tape); block B1 is the lower half of
the the cell immediately to the right of block B0 and has capacity for up to 2 cells of M ; block B2 is the
lower half of the next 2 cells to the right of that with capacity for up to 4 cells of M , etc. In general, block
Bi has contains the lower half of the next 2i−1 cells starting at cell 2i−1 and has capacity for 2i cells of M .
Block B−i for i ≥ 1 contains the corresponding upper half of cells of M ′ whose lower half is the block Bi.
In general, for block Bi and Bj , if i < j then the contents of block Bi will be to the left of those for block

LECTURE 5. CIRCUIT COMPLEXITY / COUNTING PROBLEMS 25

e

f

B B B B
0 1 2 3

B B B−1 −2 −3

d

g h i

j

k l m

B

c b a e

f

B B B B
0 1 2 3

B B B−1 −2 −3

d c a

g h i

b

B

mk lj

Figure 5.4: The smoothing of blocks B2 and block B−2.

Bj . The outer tracks of block Bi or B−i will contain contents of cells of M that are closer to the cell in
block B0 than the inner tracks.

In our simulation, when we wrap the tracks around, we permit the tape to “bunch up” within a block;
when this happens, the contents of the cell of M that would ordinarily be in the outer track of the next block
is now placed in the next free cell on the inner track of the current block. We can later undo this by moving
the bunched-up data in block Bi into Bi+1; this process is called smoothing the block. Similarly, a block
Bi may be stretched, so that it contains fewer than 2i−1 cells from the tape; if other data is pushed into it,
the vacant area on the track is filled. The tape is smoothed when it is no longer stretched. Figure 5.3 shows
the movement of the tracks in our simulation depicted in Figure 5.2 when the head moves left; block B1 is
bunched and block B−1 stretched. In Figure 5.4, we see the smoothing of blocks B2 and B−2 on such a
simulation.

We maintain the following invariants after simulating each time step t of the simulation:

1. Every block Bi with |i| > dlog2 te + 1 is smooth.

2. Bi + B−i = 2|i| i.e. if Bi is bunched, B−i is stretched an equal amount.

3. Each Bi consists of consecutive elements of the tape of M .

4. If t is a multiple of 2i then blocks Bi, Bi−1, Bi−2..., B1, B0, B−1, B−2, ...B−i are smooth.

To maintain our invariants, whenever t is 2it′ for some odd t′, we smooth out blocks B−i...Bi by bor-
rowing from or adding entries to Bi+1 and B−(i+1). We do this by copying the contents of all the cells
in B1, . . . , Bi, Bi+1 onto tape 2 and then writing them back into those cells only on the outer tracks, ex-
cept, possibly, for block Bi+1. The same is done for blocks B−1, . . . , B−(i+1). We need to argue that this
smoothing can be accomplished.

After smoothing blocks B−(i+1), . . . , B(i+1) when t is a multiple of 2i+1, we may simulate M for up
2i − 1 steps without accessing blocks Bi+1 or B−(i+1). On the 2i-th step the number of entries that will
need to appear in blocks B0, B1, . . . , Bi (or B−i, Bi−1, . . . , B0) is between 0 and 2i+1 since this number
can have changed by at most 2i during this time. Since Bi+1 has remained smooth during this time, there
are precisely 2i occupied cells in Bi+1 and space for 2i more inputs. Therefore there enough entries in Bi+1

to borrow to fill the up to 2i spaces in blocks B0, . . . , Bi that need to be filled, or enough space to take the
overflow from those blocks. A similar argument applies to blocks B−i, . . . , B0. Therefore this smoothing
can be accomplished. By carefully making sure that the inner and outer tracks are scanned whether or not
they contain entries, the smoothing can be done with oblivious motion.

How much does the smoothing cost when t is a multiple of 2i but not 2i+1? It will be less than or
equal to c2i steps in tota for some constant c. We will perform smoothing 1

2i of the time, with cost c2i per

smoothing. Therefore, the total time will be
∑

i≤dlog
2

T (n)e+1 c2i T (n)
2i which is O(T (n) log T (n).

LECTURE 5. CIRCUIT COMPLEXITY / COUNTING PROBLEMS 26

We can use the proof of THeoremm 5.1 to prove the following theorem:

Theorem 5.4 (Cook 83). If T (n) ≤ n and L ∈ NTIME(T (n)) then there exists a reduction that maps
input x to a 3-CNF formula φx in O(T (n) log T (n)) time and O(log T (n)) space such that φx has size
O(T (n) log T (n)) and x ∈ L ⇔ φx ∈ 3SAT .

Proof. φx is usual 3-CNF based on CIRCUIT-SAT. Check that producing the circuit in the proof of the
previous lemmas can be done in O(T (n) log T (n)) time and O(log T (n)) space.

5.2 Function Complexity Classes, Counting Problems, and #P

We will now define some complexity classes of numerical functions on input strings rather than decision
problems.

Definition 5.2. The class FP is the set of all functions f : {0, 1}∗ → N that are computable in polynomial
time.

Among the algorithmic problems representable by such functions are “counting problems” pertaining to
common decision problems. For example,

Definition 5.3. Define #3-SAT as the problem of counting the number of satisfying assignments to a given
3-SAT formula φ.

Remark. Note that if we can solve #3-SAT in polynomial time, then clearly we can solve any NP-complete
problem in polynomial time and thus P = NP.

We can define new complexity classes to represent such counting problems:

Definition 5.4. For any complexity class C, let #C be the set of all functions {f : {0, 1}∗ → N for which
there exists R ∈ C and a polynomial p : N → N such that f(x) = #{y ∈ {0, 1}p(|x|) : (x, y) ∈ R} =
|{y ∈ {0, 1}p(|x|) : (x, y) ∈ R}|.

In particular, for C = P, we obtain

Definition 5.5. Define the class #P to be the set of all functions {f : {0, 1}∗ → N for which there exists
R ∈ P and a polynomial p : N → N such that f(x) = #{y ∈ {0, 1}p(|x|) : (x, y) ∈ R} = |{y ∈
{0, 1}p(|x|) : (x, y) ∈ R}|.

5.2.1 Function classes and oracles

Let us consider the use of oracle TMs in the context of function classes. For a language A, let FP
A be the

set of functions f : {0, 1}∗ → N that can be solved in polynomial time by an oracle TM M ? that has A as
an oracle.

Similarly, we can define oracle TM’s M ? that allow functions as oracles rather than sets. In this case,
rather than receiving the answer from the oracle by entering one of two states, the machine can receive a
binary encoded version of the oracle answer on an oracle answer tape. Thus for functions f : {0, 1}∗ → N

and a complexity class C for which it makes sense to define oracle versions, we can define Cf , and for a
complexity class FC′ of functions we can define CFC′

=
⋃

f∈FC′ C
f .

LECTURE 5. CIRCUIT COMPLEXITY / COUNTING PROBLEMS 27

u v

u’ v’

N = n log n layers
2

.....

edge in G

gadget in G’

Figure 5.5: Gadgets used in reduction of #HAM-CYCLE to #CYCLE.

Definition 5.6. A function f is #P-complete iff

1. f ∈ #P.

2. For all g ∈ #P, g ∈ FP
f .

As 3-SAT is NP-complete, #3-SAT is #P-complete:

Theorem 5.5. #3-SAT is #P-complete.

Proof. Cook’s reduction is “parsimonious”, in that it preserves the number of solutions. More precisely, in
circuit form there is precisely one satisfying assignment for the circuit for each NP witness y. Moreover,
the conversion of the circuit to 3-SAT enforces precisely one satisfying assignment for each of the extension
variables associated with each gate.

Since the standard reductions are frequently parsimonious, and can be used to prove #P-completeness
of many counting problems relating to NP-complete problems. In some instances they are not parsimonious
but can be made parsimonious. For example we have the following.

Theorem 5.6. #HAM-CYCLE is #P-complete.

The set of #P-complete problems is not restricted to the counting versions of NP-complete problems,
however; interestingly, problems in P can have #P-complete counting problems as well. Consider #CY-
CLE, the problem of finding the number of directed simple cycles in a graph G. (The corresponding problem
CYCLE is in P).

Theorem 5.7. #CYCLE is #P-complete.

Proof. We reduce from #HAM-CYCLE. We will map the input graph G for #HAM-CYCLE to a graph G ′

for #CYCLE. Say G has n vertices. G′ will have a copy u′ of each vertex u ∈ G, and for each edge (u, v) ∈
G the gadget in Figure 5.5 will be added between u′ and v′ in G′. This gadget consists of N = ndlog2 ne+1
layers of pairs of vertices, connected to u and v and connected by 4N edges within. The number of paths
from u′ to v′ in G′ is 2N > nn. Each simple cycle of length ` in G yields 2N` simple cycles in G′. If G has k
Hamiltonian cycles, there will be k2Nn corresponding simple cycles in G′. G has at most nn simple cycles
of length ≤ n − 1. The total number of simple cycles in G′ corresponding to these is ≤ nn2N(n−1) < 2Nn.
Therefore we compute #HAM-CYCLE(G) = b#CYCLE(G′)/2Nne.

The following theorem is left as an exercise:

Theorem 5.8. #2-SAT is #P-complete.

LECTURE 5. CIRCUIT COMPLEXITY / COUNTING PROBLEMS 28

5.2.2 Determinant and Permanent

Some interesting problems in matrix algebra are represented in function complexity classes. Given an n×n
matrix A, the determinant of A is

det(A) =
∑

σ∈Sn

(−1)sgn(σ)
n∏

i=1

ai,σ(i),

where Sn is the set of permutations of n and sgn(σ) is the number of trnaspositions required to produce σ
modulo 2. This problem is in FP.

The sgn(σ) is apparently a complicating factor in the definition of det(A), but if we remove it we will
see that the problem actually becomes harder. Given an n × n matrix A, the permanent of A is equal to

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i).

Let 0-1PERM be the problem of finding the permanent of a 0-1 matrix. When we continue, we will prove
the following theorem:

Theorem 5.9 (Valiant). 0-1PERM is #P-complete.

The following is an interesting interpretation of the permanent. We can view the matrix A the adjacency
matrix of a weighted bipartite graph on vertices [n]× [n] where [n] = {1, . . . , n}. Each σ ∈ Sn corresponds
to a perfect matching of this graph. If we view the weight of a matching as the product of the weights of its
edges the permanent is the total weight of all matchings in the graph.

In particular a 0-1 matrix A corresponds to an unweighted bipartite graph G for which A is the adja-
cency matrix, and Perm(A) represents the total weight of all perfect matchings on G. Let #BIPARTITE-
MATCHING be the problem of counting all such matchings. Thus we obtain the following corollary as
well:

Corollary 5.10. #BIPARTITE-MATCHINGS is #P-complete

