Lecture6

#P, the Permanent, and Toda’'s Theorem

April 15, 2004
Lecturer: Paul Beame
Notes: Nilesh Dalvi

In this lecture, we will prove that the problem of finding the permanent of a 0-1 matrix is #P-complete.
Given an n x n, 0-1 matrix A, it can be viewed as an adjacency matrix of a directed graph G on n vertices
(with possibly self-loops). It is easy to see that the permanent of A is the number of cycle-covers of G. (A
cycle-cover is a sub-graph consisting of a union of disjoint cycles that cover the vertices of G).

The hardness of 0-1PERM is established by showing that the problem of finding the number of cycle-
covers of G is hard.

Theorem 6.1 (Valiant). 0-1PERM is#P-complete.

Proof. For a directed graph G, a cycle-cover of GG is a union of simple cycles of G that contains each vertex
precisely once. For a weighted, directed graph G, with weight matrix A, we can also view

PERM(G) = PERM(A) = Y]ﬁ[aiva@

O'ESn i=1

as the total weight of all cycle-covers of GG, where the weight of a cycle-cover is the product of the weights
of all its edges. This interpretation corresponds naturally to the representation of a permutation o as a union
1 2 3 456
345 2 1 6
formas (1 3 5)(2 4)(6) where the notation implies that each number in the group maps to the next and the
last maps to the first. (See Figure 6.1.) Thus, for an unweighted graph G, PERM(G) is the number of
cycle-covers of G.

of directed cycles. For example, if o = (> € Sg then o can also be written in cycle

3
S s zﬁ
1 .K/
5
Figure 6.1: Directed graph corresponding to (1 3 5)(2 4)(6)

Proof Idea: We will reduce #3-SAT to 0-1PERM in two steps. Given any 3-SAT formula ¢, in the first
step, we will create a weighted directed graph G’ (with small weights) such that

PERM(G') = 4% - #(p)

29

LECTURE 6. #P, THE PERMANENT, AND TODA’S THEOREM 30

where m is the number of clauses in ¢. In second step, we will convert G’ to an unweighted graph G such
that PERM(G’) = (PERM(G) mod M), where M will only have polynomially many bits.

First, we will construct G’ from ¢. The construction will be via gadgets. The VARIABLE gadget is
shown in Figure 6.2. All the edges have unit weights. Notice that it contains one dotted edge for every
occurrence of the variable in . Each dotted edge will be replaced by a subgraph which will be described
later. Any cycle-cover either contains all dotted edges corresponding to a positive occurrence (and all self-
loops corresponding to negative occurrence) or vice versa.

#arrows =
1::::) #positi ve occurances
,,,,,,,, NG

,/ #Harrows =
#negati ve occurances

fal se A K

Figure 6.2: The VARIABLE gadget

The CLAUSE gadget is shown in Figure 6.3. It contains three dotted edges corresponding to three
variables that occur in that clause. All the edges have unit weights. This gadget has the property that

1. in any cycle-cover, at least one of the dotted edges is not used, and

2. for any non-empty subset S of the dotted edges there is precisely one cycle-cover of the gadget that
includes all dotted edges but those in S. (See Figure 6.4.)

Now, given any clause C' and any literal - contained in it, there is a dotted edge (u, ") in the CLAUSE
gadget for the literal and a dotted edge (v, v’) in the appropriate side of VARIABLE gadget for the clause.
These two dotted edges are replaced by an XOR gadget shown in Figure 6.5.

The XOR gadget has the property that the total contribution of all cycle-covers using none or both of
(u,u") and (v,v") is 0. For cycle-covers using exactly one of the two, the gadget contributes a factor of 4.
To see this, lets consider all possibilities:

1. None of the external edges is present: The cycle-covers are (a ¢ b d), (a b)(c d), (a d b)(c) and
(a d ¢ b). The net contribution is (-2) + 6+ (-1) + (-3) = 0.

2. Precisely (u,a) and (a,v’) are present: The cycle-covers are (b ¢ d), (b d ¢), (¢ d)(b) and (c)(b d).
The net contribution is (2) + (3)+ (-6) + (1) = 0.

3. Precisely (v, d) and (d, ") are present: The cycle-covers are (a b)(c) and (a ¢ b). The net contribution
isl+(-1)=0.

LECTURE 6. #P, THE PERMANENT, AND TODA’S THEOREM 31

Figure 6.3: The CLAUSE gadget

-7 - - = 4
g N .7 N e
’ N / \ ,
/ \ /
/ \ '
| '

VN I ;\/’ \ VN

| s | s ~_ 7
\ \)

Figure 6.5: The XOR gadget

4. All four external edges are present: The cycle-covers are (b ¢) and (b)(c). The net contribution is 1 +

LECTURE 6. #P, THE PERMANENT, AND TODA’S THEOREM 32

(-1) =0.

5. Precisely (v, d) and (a,v") are present: In this case the gadget contains a path from d to a (represented
with square brackets) as well as a cycle-cover involving the remaining vertices. The contributions to
the cycle-covers are [d b a](c) and [d ¢ b a]. The net contribution is 1 + 3 = 4.

6. Precisely (u,a) and (d,v’) are present: The cycle-covers are [a d|(b ¢), [a d](b)(c), [a b d](c),
[a cd](b), [abcd] and [a cbd]. The net contribution is (-1) + 1+ 1+ 2+ 2+ (-1) = 4.

There are 3m XOR gadgets. As a result, every satisfying assignment of truth values to ¢ will contribute
43™ to the cycle-cover and every other assignment will contribute 0. Hence,

PERM(G') = 43™4 ()

Now, we will convert G’ to an unweighted graph G. Observe that PERM(G’) < 43m2n < 26m+n | et
N = 6m +nand M = 2V 4 1. Replace the weighted edges in G’ with a set of unweighted edges as
shown in Figure 6. For weights 2 and 3, the conversion does not affect the total weight of cycle-covers. For
weight -1, the conversion blows up the total weight by 2V = —1(modM). As a result, if G is the resulting
unweighted graph, PERM(G’) = PERM(G) (mod M).

=

Figure 6.6: Conversion to an unweighted graph

Thus, we have shown a reduction of #3-SAT to 0-1PERM. This proves the theorem.

Definition 6.1. For a complexity class C, define

@ C = {A|3R € C, polynomial bound p: N — N, s.t. z € A < #P1=Dy (2,9) € R isodd },

Dy, (z,y) € R
DD

if rc A

}

BPC = {A|3R € C, polynomial bound p : N — N, s.t. .
if x ¢ A

IN IV
W= Wi

Theorem 6.2 (Toda). PH C BP @ P C P#P,

Before we prove Toda’s theorem, we will prove the following theorem as a warm-up since it introduces
most of the ideas.

LECTURE 6. #P, THE PERMANENT, AND TODA’S THEOREM 33

Theorem 6.3 (Valiant-Vazirani, Toda). NP CR® P C RPEP,

Proof. We will concentrate on SAT for intuition. The following argument could apply to any NP language
equally well. Let ¢ be any boolean formula and let .S be the set of satisfying assignments to . To decide
if ¢ is satisfiable we could imagine feeding ¢ to an oracle for &SAT € &P. If | S| is odd, then the &SAT
oracle will return yes and we know that ¢ is satisfiable and we are done. However if |[S| > 0 is even then
we would get back a no answer which would not be helpful.

The solution is to add random linear constraints in order to reduce |S| > 0 if necessary so that it is odd.
In particular we will add linear constraints so that the remaining set of assignments S’ has |S’| = 1 which is
certainly odd.

Now we describe the notation for the random linear constraints. View S C {0,1}" = F% where [, is
the field with 2 elements.

Definition 6.2. For vy, vs,...,v; € Fy, let
<UL,V ..U ST {relFyvy-z=vy-x=...=v;-x =0}

Definition 6.3. For convenience of notation we write ¢ € g A to say that a is chosen uniformly at random
fromAandaq,...,ar €gr Asosaythataq,...,a are chosen uniformly and independently at random from
A.

Lemma 6.4 (Valiant-Vazirani). If S isany non-empty subset of I, then for vy, v - - - v, €r F3,

1
Pr(3ie{l,---n}.|SN < wvy,va,...,v; >1 |=1] > 1
We use the following weaker form which suffices:
Lemma 6.5. If S isany non-empty subset of F5, then for vy, v - - - vp11 €R FY,
1
Pr[3ie{l,---n}.|SN < wvy,va,...,0i41 >t |=1] > 3

We now see how this suffices to prove that NP € RP®F. Define ¢, such that o, (z) is true if and only if
v -z = 0. Here is the algorithm:
Choose v, - - - v, €g F§
For each i from 1 to n, call a ©SAT oracle on w; = @ A @y A=+ APy,
Accept iff one of the calls accepts.

Next class we will prove Lemma 6.5 and show the stronger result that NP C R. & P. O

