
Lecture 8

Time-Space Tradeoffs for SAT

April 22, 2004
Lecturer: Paul Beame

Notes: TerriMoore

Definition 8.1. TIMESPACE(T (n), S(n)) = {L ∈ {0, 1}∗ | ∃ offline, multitape TM M such that L =
L(M) and M uses time O(T (n)) and space O(S(n)) }.

One should note that, while TIMESPACE(T (n), S(n)) ⊆ TIME(T (n))∩SPACE(S(n)), in general the
definition is different from TIME(T (n)) ∩ SPACE(S(n)), since a single machine is required to run in both
time O(T (n)) and space O(S(n)).

We will prove a variant of the following theorem which is the strongest form of time-space tradeoffs
currently known. The first result of this sort was shown by Fortnow; on the way to showing bounds like
these we prove bounds for smaller running times due to Lipton and Viglas.

Theorem 8.1 (Fortnow-van Melkebeek). Let φ = (
√

5 + 1)/2. There is a function s : R+ → R+ s.t. for
all c < φ,SAT 6∈ TIMESPACE(nc, ns(c)) and limc→1 s(c) = 1.

We will prove a weaker form of this theorem that for c < φ, SAT 6∈ TIMESPACE(nc, no(1)). By the
efficient reduction described in Lemma 5.4 of NTIME(T (n)) to 3-SAT, which maps an NTIME(T (n))
machine to a 3CNF formula of size O(T (n) log T (n)) in time O(T (n) log T (n)) time and O(log T (n))
space, to prove this weaker form it suffices to show the following.

Theorem 8.2. For c < (
√

5 + 1)/2, NTIME(n) 6⊆ TIMESPACE(nc, no(1)).

One simple and old idea we will use is that of padding which shows that if simulations at low complexity
levels exist then simulations at high complexity levels also exist.

Lemma 8.3 (Padding Meta-lemma). Suppose that C(n) ⊆ C′(f(n)) for parameterized complexity class
families C and C′ and some function f : N → R+. C,C′ parameterized by n and f(n) respectively. Then
for any t(n) ≥ n such that is computable using the resources allowed for C(t(n)), C(t(n)) ⊆ C ′(f(t(n))).

Proof. Let L ∈ C(t(n)) and let M be a machine deciding L that witnesses this fact. Let x ∈ {0, 1}n

be input for M . Pad x to length t(n), say to creat xpad = x01t(n)−n−1. For A ∈ C(t(n)) let Apad =
{x01t(|x|)−|x|−1 | x ∈ A }. Since it is very easy to strip off the padding, Apad ∈ C(n); so, by assumption,
there is a witnessing machine M ′ showing that Apad ∈ C′(f(n)). We use M ′ as follows: On input x, create
xpad and run M ′ on xpad. The resources used are those of C′(f(n)) as required.

Theorem 8.4 (Seiferas-Fischer-Meyer). If f, g : N → N, f, g are time constructible, and f(n + 1) is
o(g(n)) then NTIME(f(n)) (NTIME(g(n)).

40

LECTURE 8. TIME-SPACE TRADEOFFS FOR SAT 41

Note that, unlike the case for the deterministic time hierarchy, there is no multiplicative O(log T (n))
factor in the separation. In this sense, it is stronger at low complexity levels. However for very quickly
growing functions (for example double exponential), the condition involving the +1 is weaker than a mul-
tiplicative log T (n). When we use it we will need to ensure that the time bounds we consider are fairly
small.

Proof Sketch. The general idea of the simulation begins in a similar way to the ordinary time hierarchy
theorem: One adds a clock and uses a fixed simulation to create a universal Turing machine for all machines
running in time bound f(n). In this case, unlike th deterministic case we can simulate an arbitrary k-tape
NTM by a 2-tape NTM with no more than a constant factor simulation loss. This allows one to add the clock
with no complexity loss at all. The hard part is to execute the complementation part of the diagonalization
argument and this is done by a sophisticated padding argument that causes the additional +1. It uses the fact
that unary languages of arbitrarily high NTIME complexity exist.

We will use the following outline in the proof of Theorem 8.2.

1. Assume NTIME(n) ⊆ TIMESPACE(nc, no(1)) for some constant c.

2. Show that for some (not too large) t(n) that is time computable, NTIME(n) ⊆ TIME(nc) =⇒
TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)f(c)+o(1)) for some constant f(c) > 0.

3. For T (n) = t(n)1/c where t(n) is given in part 2, put the two parts together derive

NTIME(T (n)) ⊆ TIMESPACE(T (n)c, T (n)o(1)) from part 1 by padding Lemma 8.3

⊆ NTIME(T (n)cf(c)+o(1)) by part 2.

4. If cf(c) < 1, this is a contradiction to the NTIME hierarchy given in Theorem 8.4.

Part 2 of this outline requires the most technical work. The key notions in the proof involve extensions of
the ideas behind Savitch’s Theorem and for this it is convenient to use alternating time complexity classes.

Definition 8.2. Define ΣkTIME(T (n)) to be the set of all languages L such that x ∈ L iff
∃T (|x|)y1∀T (|x|)y2 . . . QT (|x|)ykM(x, y1, . . . , yk) where M runs for at most O(T (|x|)) steps on input
(x, y1, . . . , yn). Define ΠkTIME(T (n)) similarly.

Lemma 8.5. For S(n) ≥ log n and any integer function b : N → N,
TIMESPACE(T (n), S(n)) ⊆ Σ2TIME(T ′(n)) where T ′(n) = b(n) · S(n) + T (n)/b(n) + log b(n).

Proof. Recall from the proof of Savitch’s Theorem that we can consider the computation as operating on
the graph of TM configurations. For configurations C and C ′ we write C `t C ′ if and only if configuration
C yields C ′ in at most t steps. In the proof of Savitch’s theorem we used the fact that we could assume a
fixed form for the initial configuration C0 and a unique accepting configuration Cf , and expressed

(C0 `T Cf) ⇐⇒ ∃Cm. ((C0 `T/2 Cm) ∧ (Cm `T/2 Cf)).

In a similar way we can break up the computation into b = b(n) pieces for any b ≥ 2, so that, denoting Cf

by Cb, we derive

(C0 `T Cb) ⇐⇒ ∃(b−1)SC1, C2, . . . , Cb−1∀log bi. (Ci−1 `T/b Ci).

Each configuration has size O(S(n) + log n) = O(S(n)) and determining whether or not Ci−1 `t/b Ci

requires time at most O(T (n)/b(n) + S(n)). Thus the computation overall is in Σ2TIME(b(n) · S(n) +
T (n)/b(n) + log b(n)).

LECTURE 8. TIME-SPACE TRADEOFFS FOR SAT 42

Corollary 8.6. For all T, S : N → R+,
TIMESPACE(T (n), S(n)) ⊆ Σ2TIME(

√

T (n)S(n)).

Proof. Apply Lemma 8.5 with b(n) =
√

T (n)
S(n) .

Given a simple assumption about the simulation of nondeterministic time by deterministic time we see
that we can remove an alternations from the computation.

Lemma 8.7. If T (n) ≥ n is time constructible and NTIME(n) ⊆ TIME(T (n)), then for time constructible
T ′(n) ≥ n,Σ2TIME(T ′(n)) ⊆ NTIME(T (T ′(n))).

Proof. By definition, If L ∈ Σ2TIME(T ′(n)) then there is some predicate R such that

x ∈ L ⇐⇒ ∃T ′(|x|)y1∀T ′(|x|)y2R(x, y1, y2)

and R(x, y1, y2) is computable in time O(T ′(|x|)). Therefore

x ∈ L ⇐⇒ ∃T ′(|x|)y1¬∃T ′(|x|)y2¬R(x, y1, y2).

By padding using the assumption that NTIME(n) ⊆ TIME(T (n)), we obtain NTIME(T ′(n)) ⊆
TIME(T (T ′(n))) and thus the set

S = {(x, y1) | |y1| ≤ T ′(|x|) and ∃T ′(|x|)y2¬R(x, y1, y2)}

is in TIME(T (T ′(n))). Since x ∈ L if and only if ∃T ′(|x|)y1¬((x, y1) ∈ S), it follows that

L ∈ NTIME(T ′(n) + T (T ′(n))) = NTIME(T (T ′(n)))

as required.

Note that the assumption in Lemma 8.7 can be weakened to NTIME(n) ⊆ coNTIME(T (n)) and the
argument will still go through. We now obtain a simple version of Part 2 of our basic outline for the proof
of Theorem 8.2.

Corollary 8.8. If NTIME(n) ⊆ TIME(nc) then for t(n) ≥ n2,
TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)c/2+o(1)).

Proof. By Corollary 8.6,

TIMESPACE(t(n), t(n)o(1)) ⊆ Σ2TIME(t(n)1/2+o(1)).

Applying Lemma 8.7 with T ′(n) = t(n)1/2+o(1) ≥ n yields

Σ2TIME(t(n)1/2+o(1)) ⊆ NTIME(t(n)c/2+o(1))

as required since (t(n)o(1))c is t(n)o(1).

Corollary 8.9 (Lipton-Viglas). NTIME(n) 6⊆ TIMESPACE(nc, no(1)) for c <
√

2.

LECTURE 8. TIME-SPACE TRADEOFFS FOR SAT 43

Proof. Let t(n) be as defined in Corollary 8.8 and let T (n) = t(n)1/c. If NTIME(n) ⊆
TIMESPACE(nc, no(1)) then

NTIME(T (n)) ⊆ TIMESPACE(T (n)c, T (n)o(1))

= TIMESPACE(t(n), t(n)o(1))

⊆ NTIME(t(n)c/2+o(1)) by Corollary 8.8

= NTIME(T (n)c2/2+o(1)).

Since c <
√

2, c2/2 < 1 and this yields a contradiction to the nondeterministic time hierarchy Theorem 8.4.

Fortnow and van Melkebeek derived a slightly different form from Lemma 8.5 for alternating time sim-
ulation of TIMESPACE(T (n), S(n)) using the following idea. For a deterministic Turing machine running
for T steps we know that C ′

0 `T Cb if and only for all C ′
b 6= Cb, C ′

0 6`T C ′
b. Furthermore Therefore

(C ′
0 `T Cb) ⇐⇒ ∀bSC ′

1, C
′
2, . . . , C

′
b−1, C

′
b∃log bi. ((C ′

b = Cb) ∨ (C ′
i−1 6`T/b C ′

i)).

Strictly speaking this construction would allow one to derive the following lemma.

Lemma 8.10. For S(n) ≥ log n and any integer function b : N → N,
TIMESPACE(T (n), S(n)) ⊆ Π2TIME(T ′(n)) where T ′(n) = b(n) · S(n) + T (n)/b(n) + log b(n).

This is no better than Lemma 8.5 but we will not use the idea in this simple form. The key is that we
will be able to save because we have expressed C ′

0 `T Cb in terms of C ′
i−1 6`T/b C ′

i. This will allow us to
have fewer alternations when the construction is applied recursively since the ¬∀C ′

1, . . . quantifiers that will
occur at the next level can be combined with the ∃i quantifier at the current level. This is the idea behind the
proof of Theorem 8.2.

Proof of Theorem 8.2. We first prove the following by induction on k. Let fk be defined by fk+1(c) =
c · fk(c)/(1 + fk(c)) and f1(c) = c/2.

Claim 1. If NTIME(n) ⊆ TIME(nc) then for k ≥ 1 and some not too large t(n),

TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)fk(c)+o(1)).

Proof of Claim. The base case k = 1 is precisely Corollary 8.8. Suppose that the claim is true for k.
Suppose that we have a machine M witness a language L in TIMESPACE(t(n), t(n)o(1)). We apply the
following expansion.

(C ′
0 `t Cb) ⇐⇒ ∀bSC ′

1, C
′
2, . . . , C

′
b−1, C

′
b∃log bi. ((C ′

b = Cb) ∨ (C ′
i−1 6`t/b C ′

i)).

Choose b(n) = t(n)fk(c)/(1+fk(c). Then t(n)/b(n) = t(n)1/(fk(c)+1) and b(n)s(n) =
t(n)fk(c)/(1+fk(c))+o(1) . Since fk(c) ≤ f1(c) = c/2 < 1, b(n)s(n) ≤ t(n)/b(n) so the computation
time for the expansion is dominated by t(n)/b(n) = t(n)1/(fk(c)+1). By the inductive hypothesis applied to
the inner C ′

i−1 6`t/b C ′
i we obtain that for some not too large t(n)/b(n) this computation can be done in

NTIME([t(n)/b(n)]fk(c)+o(1)) = NTIME(t(n)fk(c)/(fk(c)+1)+o(1)).

LECTURE 8. TIME-SPACE TRADEOFFS FOR SAT 44

Adding the ∃log bi also keeps it in the same complexity class. By padding and the hypothesis that
NTIME(n) ⊆ TIME(nc) we obtain that the inner computation ∃log bi. ((C ′

b = Cb) ∨ (C ′
i−1 6`t/b C ′

i))
can be done in

TIME(t(n)c·fk(c)/(fk(c)+1)+o(1)).

Plugging this in we obtain that

TIMESPACE(t(n), t(n)o(1)) ⊆ coNTIME(t(n)c·fk(c)/(fk(c)+1)+o(1)).

Since TIMESPACE(t(n), t(n)o(1)) is closed under complement and by the definition of fk+1(c) we obtain
that

TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)fk+1(c)+o(1))

as required.

Applying the end of the proof outline we obtain that for any k, if NTIME(n) ⊆ TIMESPACE(nc, no(1))
then for T (n) = t(n)1/fk(c),

NTIME(T (n)) ⊆ TIMESPACE(T (n)c, T (n)o(1))

= TIMESPACE(t(n), t(n)o(1))

⊆ NTIME(t(n)fk(c)+o(1))

= NTIME(T (n)c·fk(c)+o(1)).

Observe that fk(c) is a monotonically decreasing function with fixed point f∗(c) = c · f∗(c)/(f∗(c) + 1)
when f∗(c) = c−1. Then c·f∗(c) = c(c−1) < 1 when c < φ = (

√
5+1)/2 which provides a contradiction

to the nondeterministic time hierarchy theorem.

Open Problem 8.1. Prove that NTIME(n) ⊆ TIMESPACE(nc, no(1)) for some c > (
√

5 + 1)/2, for
example c = 2.

