Lecturell

IP, PH, and PSPACE

May 4, 2004
Lecturer: Paul Beame
Notes: Daniel Lowd

11.1 IP and PH

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the
predicate PERM(A) = k.

Before we prove this theorem we note a number of corollaries.
Corollary 11.2. There exist polynomial length interactive proofs for all of #P.
Corollary 11.3. PH C IP

This is surprising, because a constant number of alternations is equivalent to two alternations, but an
unbounded number yields PH. Later, we will prove that there exist interactive proofs for everything in
PSPACE.

Proof of Corollaries. These follow from the easy observation that IP is closed under polynomial-time (Tur-
ing) reduction and by Toda’s theorem. O

Remark. In the journal version of their paper, Lund, Fortnow, Karloff, and Nisan gave an alternative direct
protocol proving Corollary 11.2. This proof is given in full in Sipser’s text. We present the protocol for
the permanent directly both because it is interesting in its own right and because the permanent problem
motivates the whole approach for these proofs.

Proof of Theorem 11.1. We perform the computation of PERM over some finite field IF, where |F| > 10n3.
We also assume that {1,...,n} C IF, although we can remove this restriction by simply choosing n distinct
field elements of I that can substitute for {1,...,n}.

Recall the definition of PERM:
PERM(4) = >] aion)
UESn =1

where a; ; is the element in the ith row and jth column of matrix A and S,, is the set of all permutations
from {1,...,n} toitself.

Note that PERM is a multivariate polynomial in the inputs, with total degree n and degree at most 1 in
each variable a; ;. Furthermore, we can define PERM recursively via the following self-reduction:

59

LECTURE 11. IP, PH, AND PSPACE 60

Definition 11.1. Let A(i|j) be the (n — 1) x (n — 1) matrix equal to A with its ith row and jth column
removed.

Claim 2. PERM(A) = 327 ay [PERM(A(L[0)).

The proof for this reduction is by direct application of the definition:

Z Z Hai,o(i) = ;al,é Z Hai,a(i)

=1 seg,, il o€y i=2
o(l)=1¢

n—1
= Zau Z Hai’p’(i’)

/=1 oc€S,_1 1=1

{J(i’) for o(i')

where i =i+ 1and o'(i') =
e &) o(#')+1 foro(i)

= S ai. - PERM(A(1]0)).

To prove that PERM(A) = k, it suffices to prove the values of PERM(A(1|¢)) for ¢ = 1,...n. Of
course, a fully recursive algorithm would yield n! subproblems, saving us nothing over direct computation.
Instead, the prover will give one proof that gives allows us to recursively prove values for all PERM(A(1]¢))
via a single proof rather than n separate proofs.

To do this we will use a representation of these values of the permanent as polynomials. The following
are the two basic properties of polynomials that we will use.

Proposition 11.4. If p # 0 isa degree d univariate polynomial over I then p has at most d roots.
Corollary 11.5. For any degree d univariate polynomial f # 0 over F, Pr,c.r[f(r) = 0] < d/|F|.

Proposition 11.6. (Interpolation Lemma) Given any distinct set of points {b1,...b,} C F and any (not
necessarily distinct) {c1,...,c,} C F thereisa degree n univariate polynomial p € [F[x] such that p(b;) =
cgfori=1,... n.

Basic Idea Write B(¢) = A(1]¢). Then

bia(€) - bia-1(f)
BO)=| - :
bp—1,1(0) -+ bp_1n-1(0)
Each b; ;(¢) is a function: {1,...,n} — F. By the interpolation lemma, there are degree n polynomials

pij(2) such that p; ;(¢) = b;;(¢) for £ = 1,...n. Write B(z) for this matrix of polynomials. Then
B(¢) = A(1]¢) for ¢ = 1,...,n butis also defined for other values of z.

Given this matrix of polynomials B(z),

PERM(A) =) " a1 (PERM(B(())
/=1
Observe that:

LECTURE 11. IP, PH, AND PSPACE 61

1. PERM(B(z)) is a degree (n — 1)n univariate polynomial over F.

2. Given A, both players can compute what B(z) is.

Interactive protocol to prove that PERM(A) = k

e Prover computes f(z) = PERM(B(z)) and sends the n(n — 1) + 1 coefficients of f to the verifier.
o Vrifier checks that "), a1 ¢f(¢) = k. If good, chooses r; € IF and sends it to the prover.

e Prover continues with a proof that PERM(B(r1)) = f(r1).

The proof continues until matrix size is one. In that case the Verifier computes the permanent directly by
checking that the single entry of the matrix is equal to the claimed value for the permanent.

Note. Note that is very important in this protocol r; could take on a value larger than n. In other words,
B(r;) might not be a submatrix of A at all.

Clearly, if PERM(A) = k then the prover can always convince the verifier.

Suppose that PERM(A) # k. At each round there is an i x ¢ matrix A; and an associated claimed
value k; for the permanent of A; where A,, = A and k,, = k. The Prover can cause the Verifier to accept
only if PERM(A;) = k;. Therefore in this case there is some round i such that PERM(A;) # k; but
PERM(A;_1) = k;—1. Let B(z) be the (¢ — 1) x (¢ — 1) polynomial matrix associated with A; and f(z) be
the degree (i — 1) polynomial sent by the Prover in this round. Either f(z) = PERM(B(z)) as polynomials
or not.

If f(z) = PERM(B(z)), then >~)_, a10f(¢) = >")_, a1 /,PERM(B(¢)) # k, and the verifier will reject
the proof immediately.

If f(2) # PERM(B(z)), then f(z) — PERMB(z)) # 0 and therefore Pr,c.r[f(r) = PERM(B(r))] <
i(i — 1)/|F|. In other words, the probability that the prover can “fool” the verifier in this round is at most
i(¢ — 1)/|F|. Therefore, the total probability that the Prover succeeds in convincing the Verifier of an
incorrect value is at most >"" ,i(i — 1)/F < n?/|F| < 1/10 for |F| > 10n3. (In fact, the sum is at most
(n® —n)/(3]]) so |F| > n? suffices.) O

The above proof shows that there are interactive proofs for coNP. A constant number of rounds is
unlikely unless the polynomial-time hierarchy collapses. However, in the above protocol the prover requires
the ability to solve a #P-hard problem.

Open Problem 11.1. What prover power is required to prove coNP C IP?

11.1.1 Low Degree Polynomial Extensions

A key idea of the above argument was to use low degree polynomial extensions. This involves taking a
function f : I — F, inthis case I = {1,...,n}, extending it to a polynomial P, : F — I, and checking Py
on random points of F.

To apply this we used the fact that the function in question we wished to compute could be expressed as
a multivariate polynomial of low total degree.

LECTURE 11. IP, PH, AND PSPACE 62

11.2 IP equals PSPACE

In this section we prove the following characterization theorem for IP.

Theorem 11.7 (Shamir, Shen). IP = PSPACE

Proof. (Following Shen.) We will prove the hard direction, namely that PSPACE C IP; the other direction
is left as an exercise.

The key idea of this proof will also involve low degree polynomial extensions. In order to use this we
need the following facts about finite fields.

1. For any integer n, there exists a prime p such that n < p < 2n.

2. For any prime p and integer k& > 0, there exists a finite field F 5 with p* elements.

We construct an IP protocol for TQBF using low-degree polynomial extensions over a small finite field
IF. Specifically, we can choose a small field F with n3m < IF| < 2n3m, where m is the number of 3-CNF
clauses and n is the number of variables in the TQBF formula ¥ = 3z,Vas - - - Quapi(xy,. .., x,) Where
1 is a 3-CNF formula.

11.2.1 Arithmetization of Boolean for mulas

Create multivariate polynomial extensionds for Boolean formulas as follows:

P;- P,
(1Z — Py)
1 (1= Py)(1-P,).

J
~
1111

(fVg)=—(=fNA—g)

We use the notation Py ® P, as a shorthand for 1 — (1 — ps)(1 — p,). Applying these operations
Py(x1,...,xy) is of degree < m in each variable, with a total degree of < 3m.

Continuing this in the obvious way we obtain that
Pvmnf(xl, e ,l'n_l) = Pf(xl, ey 1, 0) . Pf(xl, ey Tp—1, 1)

and
ngnf(l’l,. .. ,:L‘n_l) = Pf(:cl,. .. ,:L‘n_l,O) @Pf(l’l,. oy Tp—1, 1).

We want to know if Py () = 1. The obvious analog to our proof for PERM has a problem: the degree of
the polynomial doubles at each quantification step and thus the univariate polynomials we will create will
have exponential degree. The solution rests on the fact that our polynomial need only be correct on inputs
over {0, 1}, which yields only two points per variable. Thus a polynomial of linear degree in each variable
will suffice. For this purpose we introduce a new degree reduction operation Rz ;.

Definition 11.2. PR(L'Z'f(x:h'--vmn) = XT; - Pf(xl,...,xi_l,l,le,...,aﬁn) + (1 — l’l)
Pf(l‘l,...,:L'Z'_l,l,l'i+1,...,ZL‘n)

LECTURE 11. IP, PH, AND PSPACE 63

We now replace ¥ by the formal sequence

Uy = Jz1Rx1Veo Rxy RroJrsRey ReaRas - - - Quup RryRxs - - - Reptp(zq, ..., xy).

While the 3 and V operators increase the polynomial degree, the R operators bring it back down to at
most one in each variable.

11.2.2 An Interactive Protcol for PSPACE

Using the arithmetization discussed earlier, we now show that the prover can convince the verifier in poly-
nomial time.

First, the Prover claims to the Verifier that Py, () = 1. At stage j of the interactive proof there will be
some fixed values r1, ..., 7, € IF chosen by the Verifier so far and a value a; € IF for which the Prover will
be trying to convince the Verifier that Py, (r1,. .., %) = a;.

There are several different cases, depending on the form of ¥ ;.

U; = Va1V 410 In this case, the Prover computes f;11(2) = Py, (r1,...,7%, 2) and transmits the coefficients of

fj+1. The Verifier checks that f;11(0) - fj+1(1) = a; (which should be Py, (r1,...,7x)). If not, the
Vferifier rejects; otherwise, the Verifier chooses r;.1 €r I and sends 7, to the Prover. The new
value aj4+1 = fj+1(rk+1) and the protocol continues as the Prover tries to convince the Verifier that

Py, (1,5 Thy1) = @i

U, = Vap1V; 41 In this case, the Prover computes f;41(2) = Py, (r1,...,7%,2) and transmits the coefficients of

J

fi+1. The Verifier checks that f;,1(0) ® f;4+1(1) = a; (which should be Py, (r1,...,7%)). If not,
the Verifier rejects; otherwise, the Verifier chooses ;11 €r F and sends r;_ to the Prover. The new
value a1 = fj4+1(rk+1) and the protocol continues as the Prover tries to convince the Verifier that

Py, (11, Thy1) = ajp.

U; = Rx; W, In this case, the Prover computes f;11(2) = Py,.,(r1,...,7-1,%,7it1,...,7k—1) and transmits

J

the coefficients of f;, ;. (Unlike the other two cases there may be many coefficients and not just
two coefficients.) The verifier checks that (1 — r;)f;+1(0) + r;fj+1(1) = a; (which should be
Py, (r1,...,7%)). If not, the Verifier rejects; otherwise, the Verifier chooses r; € F and sends r; to
the Prover. The new value a;+1 = f;41(r}) and the protocol continues as the Prover tries to convince
the Verifier that Py, (71, ..., 71,75, it 15+ -+, Tk) = Qj11.

In the base case when there are no quantifiers, the Verifier simply evaluates Py (rq,...,r,) and accepts if
and only if the result is correct.

The total number of stages is n + n(n — 1)/2: one stage for each existential or universal quantifier, plus
>, 4 stages for the R quantifiers. The maximum degree in any stage is no more than the greater of 2 and
m, the number of clauses in .

Clearly, if the values are correct, then the Prover can convince the \erifier at each stage by sending the
correct polynomial for f;.

In case Py, () # 1, if the Verifier accepts then there is some stage at which Py, (7) # a; but Py, (") =
a;41. If the Prover sends the correct coefficients of f;; then the Verifier will immediately reject because
the Verifier directly checks that the Prover’s answers reflect the recursive definition of Py . If the Prover

LECTURE 11. IP, PH, AND PSPACE 64

sends the incorrect coefficients for £, then the chance that the Verifier chooses a random value » on which
ajr1 = fjy1(r) = Ppsi; ., (-..,7,...) is at most the degree of f; ., divided by [F| which is at most m /|F|.

By the union bound, the total failure probability is therefore less than:

(n(nz—l) + ’I’L)TTL

||

which for |F| > mn? yields failure probability less than 1/n. O

