
Lecture 16

Circuit Lower Bounds for NP problems

May 27, 2004
Lecturer: Paul Beame

Notes: Nilesh Dalvi

In the few years after the definitions of NP-completeness, there was some hope that techniques such
as diagonalization from recursive function theory would be able to resaolve the question. However, those
hopes were dashed in the late 1970’s by the following construction.

Theorem 16.1 (Baker-Gill-Solovay). There exists oracles A, B such that

P
A = NP

A,PB 6= NP
B

Since diagonal arguments generally work even when the machines involved are given access to oracles,
this theorem suggests that diagonalization cannot help in deciding if P = NP or P 6= NP.

Throughout the 1970’s, there was also more focus by Cook and others on approaching the P versus NP

question via the following containments of complexity classes

L ⊆ NL ⊆ P ⊆ NP.

This led to the use of more restrictive log-space reductions instead of polynomial-time reductions and to
look at which problems could be solved in both polynomial time and polylogarithmic space with a view to
separating classes such as L from NP. This led to the naming of the following classes of languages which
eventually came to be named after Steve Cook.

Definition 16.1.

SC
k = TIMESPACE(nO(1), logk n)

SC = ∪kSC
k [”Steve’s Class” after Steve Cook].

Open Problem 16.1. Is SC = P? Is NL ⊆ SC?

In the late 1970’s in part because of the proved weakness of diagonalization above, the study of
non-uniform complexity in general and circuits in particular rose to prominence. In particular, both for
complexity-theoretic reasons and for understanding the power of parallel computation, the following com-
plexity class analogues of SC were suggested.

Definition 16.2.

NC
k = SIZEDEPTH(nO(1), O(logk n))

NC = ∪kNC
k [”Nick’s Class” after Nick Pippenger].

86

LECTURE 16. CIRCUIT LOWER BOUNDS FOR NP PROBLEMS 87

If each gate has a constant time delay, problems solvable in NC can be solved in polylog time us-
ing a polynomial amount of hardware. Both to understanding how one would actually build such par-
allel machines it is natural to define uniform versions of the NC circuit classes, which express how
easy it is to build the n-th circuit. There are many variants of such uniform complexity classes:

polytime uniform : there is a TM that on input 1n outputs the nth circuit in time no(1)

log-space uniform : there is a TM that on input 1n outputs the nth circuit using space O(logn)
or, equivalently, there is a TM that given a triple (u, v, op) of gate names u and v
and an operation op determines whether or not u is an input to v and gate v is
labeled by op and operates in linear space in the size of its input.

FO uniform : the language (u, v, op) as above can be recognized by a first-order logic formula.

Theorem 16.2. The following containment holds

log-space uniform NC
1 ⊆ L ⊆ NL ⊆ NC

2

Proof sketch. log-space uniform NC
1 ⊆ L: An NC

1 circuit has O(log n) depth. A log-space machine can
evaluate the circuit by doing a depth-first traversal using stack height at most O(log n) and accessing the
gates as needed using the log-space constructibility of the circuit as needed. in log-space and, the circuit can
be evaluated.

(NL ⊆ NC
2) We show that directed graph reachability can be computed in NC

2. Graph reachability
can be computed by using ∧ − ∨ matrix powering to compute transitive closure. This can be computed
efficiently using repeated squaring.

A → A2 → A4 → · · · → A2log n
= An

where A is the adjacency matrix. Each matrix squaring can be performed in O(log n) depth and polyno-
mial size since there is a simple O(log n) depth fan-in circuit computing

∨n
k=1(aik ∧ akj). Thus, graph

reachability can be performed in O(log2 n) depth and polynomial size.

Open Problem 16.2. Is NP 6⊆ NC
1? Even more specifically it is consistent with our current knowledge that

NP ⊆ SIZEDEPTH(O(n), O(log n))!

Additional Circuit Complexity Classes in NC

Definition 16.3. Define AC−SIZEDEPTH(S(n), d(n)) to be the circuit complexity class with appropriate
size and depth bounds that allows unbounded fan-in ∨ and ∧ gates in addition to binary fan-in ∨ and ∧
gates. [The AC stands for “alternating class” or “alternating circuits”.]
Define AC

k = AC−SIZEDEPTH(nO(1), O(logk n)).

Analogously, we define AC[p]−SIZEDEPTH(S(n), d(n)) and AC
k[p] where one also allows unbounded

fan-in ⊕p gates, where

⊕p(x1, · · · xn)

{

0 if
∑

xi ≡ 0 (mod p)

1 if
∑

xi 6≡ 0 (mod p).

and ACC−SIZEDEPTH(S(n), d(n)) and ACC
k where where unbounded fan-in ⊕p gates for any values of

p are allowed. [ACC stands for “alternating circuits with counters”.

Finally, define threshold circuits TC−SIZEDEPTH(S(n), d(n)) and TC
k to allow threshold gates T n

m,
where

T n
m(x1, · · · xn) =

{

1 if
∑

xi ≥ m

0 otherwise.

LECTURE 16. CIRCUIT LOWER BOUNDS FOR NP PROBLEMS 88

These circuits are important since TC0 corresponds to bounded-depth neural networks.

Lemma 16.3. Following containments hold

NC
0 ⊆ AC

0 ⊆ AC
0[p] ⊆ ACC

0 ⊆ TC
0 ⊆ NC

1

Proof. All of the containments follow easily from definitions. For example ACC
0 ⊆ TC

0 because count can
be implemented by threshold gates.

Additionally, there is the following non-trivial containment:

Lemma 16.4. NC
1 ⊆ AC−SIZEDEPTH(nO(1), O(log n/ log log n)).

Proof. Break the NC
1 circuit into O(log n/ log log n) layers of depth m = log log n each. Eac gate at the

boundaries between the layers can be expressed as a binary fan-in circuit with at most 2m inputs from the
boundary gates of the previous layer. Any function on M = 2m inputs can be expressed as a (depth-2) DNF
formula of size M2M = 2m22m

= O(n log n) so we can replace the circuitry between each layer by the
appropriate unbounded fan-in circuitry from these DNFs, retaining polynomial size but reducing depth by a
factor of 1

2 log log n.

The following are the two main theorems we will prove over the next lecture and a half. As stated, the
latter theorem is stronger than the former but the proof techniques for the former yield sharper bounds and
are interesting and useful in their own right.

Theorem 16.5 (Furst-Saxe-Sipser, Ajtai). Parity, ⊕2, is not in AC
0.

Theorem 16.6 (Razborov, Smolensky). Let p 6= q be primes. Then ⊕p 6∈ AC
0[q].

Corollary 16.7. ⊕p 6∈ AC
0[q] where q is a prime power and p contains a prime factor not in q.

For the rest of this lecture we give the proof of Theorem 16.5.

Intuition: For an unbounded fan-in ∨ gate, setting any bit to 1 fixes the output. In an unbounded fan-in
∧ gate, setting any bit to 0 fixes the output. However, for a parity gate, all the inputs need to be fixed to
determine the output. Therefore, set bits to simplify the AC

0 circuit (and eventually fix its value) while
leaving some bits unset which ensure that the circuit cannot compute parity.

Definition 16.4. Define a restriction to be a function ρ : {1, · · · n} → {0, 1, ∗}, where

ρ(i) =











0 means that variable xi is set to 0,

1 means that variable xi is set to 1, and

∗ means that variable xi is not set.

Let ∗(ρ) = ρ−1(∗) denote the set of variables unset by ρ.
Define f |ρ or C|ρ as the simplification of the function or circuit that results from applying the restriction ρ.

Definition 16.5. Define Rp to be a probability distribution on the set of restrictions such that for each i, the
probabilities of ρ(i) being *, 0 and 1 are p, 1−p

2 and 1−p
2 respectively and are independent for each i.

Lemma 16.8 (Hastad’s Switching Lemma). Let 0 ≤ p ≤ 1 and let F be an s-DNF formula, i.e., having
terms of length at most s. For ρ ∈R Rp,

Pr[F |ρ cannot be expressed as a t-CNF] < (5ps)t.

LECTURE 16. CIRCUIT LOWER BOUNDS FOR NP PROBLEMS 89

The proof of this lemma is too long to present here but some useful intuition is in order. Suppose we
examine the terms of F , one by one. Any clause that is not set to by ρ leaves an s-DNF remaining without
that clause, which is a problem of essentially the same type as before. Given that the term is not set to 0
then every variable in the term is either unset or set according to its sign in the term. Given this, it has only a
roughly 2p chance that it is unset versus set according to the term. Therefore the expected number of unset
variables in any term is at most 2ps and it is very unlikely that more than one will be found in any term. Of
course the above argument ignores all sorts of probability conditioning which yields the extra .

Corollary 16.9. Let f : {0, 1}n → {0, 1} be in AC−SIZEDEPTH(S, d). Then, there exists ρ such that
| ∗ (ρ)| ≥ n/(10d(log S + 1)d−1) and f |ρ can be expressed as a (log S + 1)-DNF or CNF.

Proof. Without loss of generality assume that all negations are at leaves and ∨ and ∧ alternate.

The general idea is to apply the Hastad switching lemma to the subcircuits of the circuit computing f
that are nearest the inputs (usually called the bottom level of the circuit). At the bottom level, the functions
at the ∨ (resp. ∧) gates are switched to ∧ (reps. ∨) gates and merged with the level above.

In general, in applying the Hastad switching lemma, the argument will maintain s = t = log S + 1 and
set p = 1

10(log S+1) = 1
10s

. In this case

(5ps)t = 2−t = 2− log S−1 =
1

2S
.

At the start of the argument however, the bottom level ∧ or ∨ gates correspond to 1-DNF or 1-CNFs so one
begins with s = 1 and t = log S+1. In this first step p = 1

10 is good enough to yield a 1
2S

failure probability
at most.

Let i = 1. For each gate g at the bottom level, the probability that g doesn’t simplify under ρi ∈R Rp is
less than 1

2S
. There are at most S such gates; so, the probability that there is some gate that doesn’t simplify

is less than 1/2.

Note that | ∗ (ρi)| is a binomially distributed random variable with mean E[| ∗ (ρi)|] = pn. Because
when p(1 − p)n → ∞ the binomial distribution behaves in the limit like a normal distribution a constant
fraction of its weight is above the mean, so we have Pr[| ∗ (ρi)| ≥ pn] ≥ 1/3.
Therefore Pr[ρi has | ∗ (ρi)| ≥ pn and circuit depth shrinks by 1] ≥ 1/6. Hence, by probabilistic method
there exists a ρi that has these properties. Fix it and repeat for i + 1, reducing depth every time. This gives
us a combined restriction ρ which is the composition of all the ρi and has the desired properties.

Theorem 16.10. Any AC circuit computing parity in size S and depth d has S ≥ 2
1
10

n1/(d−1)
− 1.

Proof. To compute parity, we need

∗(ρ) ≤ log S + 1

⇒
n

10d(log S + 1)d−1
≤ log S + 1

⇒ n ≤ 10d(log S + 1)d

⇒ S + 1 ≥ 2
1
10

n1/d

To obtain a stronger result, observe that the subcircuits of depth d − 1 that are combined to produce the
parity function also require terms/clauses of size equal to the number of unset variables. Therefore we can
apply the above argument to the depth d − 1 subcircuits of the parity circuit and replace d by d − 1.

LECTURE 16. CIRCUIT LOWER BOUNDS FOR NP PROBLEMS 90

Note that for the size to be polynomial this requires depth d = Ω(log n/ log log n).

The above argument is essentially tight since parity can be computed by AC circuits of depth d and size
2O(n1/(d−1)).

