Lecture 17

Counting is hard for small depth circuits

June 1, 2004 Lecturer: Paul Beame

Notes: Sumit Sanghai

In this lecture we will give bounds on circuit size-depths which compute the function \oplus_p . More specifically we will show that a polynomial-sized constant depth $AC^0[q]$ circuit cannot compute \oplus_p .

Theorem 17.1 (Razborov,Smolensky). Let $p \neq q$ be primes. Then $\bigoplus_p \notin AC^0[q]$.

We will prove that
$$S = 2^{n^{\Omega(1/d)}}$$
 or $d = \Omega(\log n/\log\log S)$. Note that $AC^0[q]$ contains the operations \wedge , \vee , \neg and \oplus_q where $\oplus_q(x_1,\ldots,x_n) = \begin{cases} 0 & \text{if } \sum_i x_i \equiv 0 \pmod q \\ 1 & \text{otherwise.} \end{cases}$

To prove this theorem we will use the *method of approximation* introduced by Razborov.

Method of Approximation For each gate g in the circuit we will define a family A_g of allowable approximators for g. For the operation Op_g at gate g, we define an approximate version Op_g such that if $g = Op_g(h_1, \dots, h_k)$ then $\widetilde{g} = Op_g(\widetilde{h_1}, \dots, \widetilde{h_k}) \in A_g$.

We will prove that there are approximators such that $\widetilde{Op}(\widetilde{h_1},\cdots,\widetilde{h_k})$ and $Op(\widetilde{h_1},\cdots,\widetilde{h_k})$ differ on only an ϵ -fraction of all inputs implying that the output $\widetilde{f}\in A_f$ differs from f on at most ϵS fraction of all inputs. We will then prove that any function in A_f differs from f on a large fraction of inputs proving that S is large given d.

Proof of Theorem 17.1. We will prove that $\oplus_2 \notin AC^0[q]$ where q is a prime greater than 2. The proof can be extended to replace \oplus_2 by any \oplus_p with $p \neq q$.

The Approximators For a gate g of height d' in the circuit, the set of approximators A_g will be polynomials over \mathbb{F}_g . of total degree $\leq n^{\frac{d'}{2d}}$.

Gate approximators

- \neg gates: If $g = \neg h$, define $\widetilde{g} = 1 \widetilde{h}$. This yields no increase in error or degree.
- \bigoplus_q gates: If $g = \bigoplus_q (h_1, \dots, h_k)$, define $\widetilde{g} = (\sum_{i=1}^k \widetilde{h_i})^{q-1}$. Since q is a prime, by Fermat's little theorem we see that there is no error in the output. However, the degree increases by a factor of q-1.
- V gate:
 Note that without loss of generality we can assume that other gates are ∨ gates: We can replace the

 \wedge gates by \neg and \vee gates and since the \neg gates do not cause any error or increase in degree we can "ignore" them.

Suppose that $g = \bigvee_{i=1}^k h_i$. Choose $\bar{r_1}, \dots, \bar{r_t} \in_R \{0,1\}^k$. Let $\tilde{h} = (\widetilde{h_1}, \dots, \widetilde{h_k})$. Then

$$\Pr[\bar{r_1} \cdot \widetilde{h} \equiv 0 \pmod{q}] = \begin{cases} 1 & \text{if } \bigvee i = 1^k \widetilde{h_i} = 0, \text{ and } \\ \leq 1/2 & \text{otherwise.} \end{cases}$$

(This follows because if $\bigvee_{i=1}^k \widetilde{h_i} = 1$ then there exists j such that $\widetilde{h_j} \neq 0$ in which case if we fix the remaining coordinates of $\overline{r_1}$, there is at most one choice for the j^{th} coordinate of $\overline{r_1}$ such that $\overline{r_1} \cdot \widetilde{h} \equiv 0 \pmod{q}$.)

Let $\widetilde{g_j} = (\bar{r_j} \cdot \widetilde{h})^{q-1}$ and define

$$\widetilde{g} = \widetilde{g_1} \vee \cdots \vee \widetilde{g_t} = 1 - \prod_{j=1}^t (1 - \widetilde{g_j}).$$

For each fixed vector of inputs \widetilde{h} ,

$$\Pr[\widetilde{g} \neq \bigvee_{i=1}^k \widetilde{h_i}] \leq (1/2)^t.$$

Therefore, there exists $\bar{r_1}, \dots, \bar{r_t}$ such that \tilde{g} and $\bigvee_{i=1}^k \tilde{h_i}$ differ on at most a $(1/2)^t$ fraction of inputs. Also note that the increase in degree from the $\hat{h_i}$ to \hat{g} is (q-1)t. We will choose $t=n^{\frac{1}{2d}}/(q-1)$.

Thus we obtain the following lemma:

Lemma 17.2. Let $q \ge 2$ be prime. Every AC[q] circuit of size S and depth d has a degree $((q-1)t)^d$ polynomial approximator over \mathbb{F}_q with fractional error at most $2^{-t}S$.

In particular, setting $t = \frac{n^{1/(2d)}}{q-1}$, there is a degree \sqrt{n} approximator for the output of the circuit having $error \leq 2^{-\frac{n^{1/(2d)}}{q-1}}S$.

In contrast we have the following property of approximators for \oplus_2 .

Lemma 17.3. For q > 2 prime and $n \ge 100$, any \sqrt{n} degree polynomial approximator for \oplus_2 over \mathbb{F}_q has error at least 1/5.

Proof. Let $U = \{0,1\}^n$ be the set of all inputs. Let $G \subseteq U$ be the set of "good" inputs, those on which a degree \sqrt{n} polynomial a agrees with \oplus_2 .

Instead of viewing \oplus_2 as $\{0,1\}^n \to \{0,1\}$ we consider $\oplus_2': \{-1,1\}^n \to \{-1,1\}$ where we interpret -1 as representing 1 and 1 as representing 0. In particular, $\oplus_2'(y_1,\cdots,y_n)=\prod_i y_i$. where $y_i=(-1)^{x_i}$. We get that $\oplus_2(x_1,\cdots,x_n)=1$ if and only if $\oplus_2'(y_1,\cdots,y_n)=-1$.

We can see that the $x_i \to y_i$ map can be expressed using a linear map m as follows $m(x_i) = 2x_i - 1$ and since q is odd, m has an inverse map $m^{-1}(y_i) = (y_i + 1)/2$

Thus, given a of \sqrt{n} -degree polynomial that approximates \oplus_2 , we can get an approximator a' of \sqrt{n} degree that approximates \oplus_2' by defining

$$a'(y_1, \dots, y_n) = m(a(m^{-1}(y_1), \dots, m^{-1}(y_n))).$$

It is easy to see that a' and \oplus_2' agree on the image m(G) of G.

Let \mathcal{F}_G be the set of all functions $f: m(G) \to \mathbb{F}_q$. It is immediate that

$$|\mathcal{F}_G| = q^{|G|}. (17.1)$$

Given any $f \in \mathcal{F}_G$ we can extend f to a polynomial $p_f: \{1,-1\}^n \to F_q$ such that f and p_f agree everywhere on m(G). Since $y_i^2=1$, we see that p_f is multilinear. We will convert p_f to a $(n+\sqrt{n})/2$ -degree polynomial.

Each monomial $\prod_{i \in T} y_i$ of p_f is converted as follows:

- if $|T| \le (n + \sqrt{n})/2$, leave the monomial unchanged.
- if $|T| > (n+\sqrt{n})/2$, replace $\prod_{i \in T} y_i$ by $a' \prod_{i \in \bar{T}} y_i$ where $\bar{T} = \{1, \dots, n\} T$. Since $y_i^2 = 1$ we have that $\prod_{i \in T} y_i \prod_{i \in T'} y_i = \prod_{i \in T \Delta T'} y_i$. Since on m(G), $a'(y_1, \dots, y_n) = \prod_{i=1}^n y_i$, we get that $\prod_{i \in T} y_i = a' \prod_{i \in \bar{T}} y_i$ on m(G). The degree of the new polynomial is $|\bar{T}| + \sqrt{n} \le (n \sqrt{n})/2 + \sqrt{n} = (n + \sqrt{n})/2$.

Thus $|\mathcal{F}_G|$ is at most the number of polynomials over \mathbb{F}_q of degree $\leq (n+\sqrt{n})/2$. Since each such polynomial has a coefficient over \mathbb{F}_q for each monomial of degree at most $(n+\sqrt{n})/2$,

$$|\mathcal{F}_G| \le q^M \tag{17.2}$$

where

$$M = \sum_{i=0}^{(n+\sqrt{n})/2} {n \choose i} \le \frac{4}{5} 2^n$$
 (17.3)

for $n \ge 100$. This latter bound follows from the fact that this sum consists of the binomial coefficients up to one standard deviation above the mean. In the limit as $n \to \infty$ this would approach the normal distribution and consist of roughly 68% of all weight. By n around 100 this yields at most 80% of all weight.

From equations 17.1,17.2 and 17.3 we get $|G| \leq |M| \leq \frac{4}{5}2^n$. Hence the error $\geq 1/5$.

Corollary 17.4. For q>2 prime, any $AC^0[q]$ circuit of size S and depth d computing \oplus_2 requires $S\geq \frac{1}{\epsilon}2^{\frac{1}{2d}\over q-1}$

Proof. Follows from Lemmas 17.2 and 17.3. □

This yields the proof of Theorem 17.1. \Box

From Corollary 17.4, we can see that for polynomial-size AC[q] circuits computing \oplus_2 , the depth $d=\Omega(\frac{\log n}{\log\log n})$. By the lemma from the last lecture that $\mathrm{NC}^1\subseteq \mathrm{AC-SIZEDEPTH}(n^{O(1)},O(\frac{\log n}{\log\log n}))$ any asymptotically larger depth lower bound for any function would be prove that it is not in NC^1 .

Our inability to extend the results above to the case that q is not a prime is made evident by the fact that following absurd possibility cannot be ruled out.

Open Problem 17.1. Is $NP \subseteq AC^0[6]$?

The strongest kind of separation result we know for any of the NC classes is the following result which only holds for the uniform version of ACC⁰. It uses diagonalization.

Theorem 17.5 (Allender-Gore). PERM \notin UniformACC⁰.