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In this lecture we will give bounds on circuit size-depths which compute the function @,,. More specifi-
cally we will show that a polynomial-sized constant depth AC[q] circuit cannot compute ,,.

Theorem 17.1 (Razborov,Smolensky). Let p # ¢ be primes. Then @, ¢ AC[q].

Q(1/d)

or d = Q(logn/loglog S). Note that AC°[q] contains the operations
0 if >, 2; =0 (mod q)
1 otherwise.

We will prove that § = 2™

A, V, ~and &, where &y (x1,...,2,) = {

To prove this theorem we will use the method of approximation introduced by Razborov.

Method of Approximation For each gate ¢ in the circuit we will define a family A, of allowable ap-
proximators for g. For the operation Op, at gate g, we define an approximate version Op, such that if
g = Opg(h1,--- ,hi) then g = Opg(hy,--- , hy) € Ay

We will prove that there are approximators such that @vp(ﬁvl, e ,71;) and Op(ﬁvl, e ,71;) differ on only
an e-fraction of all inputs implying that the output f € A differs from f on at most S fraction of all inputs.
We will then prove that any function in A, differs from f on a large fraction of inputs proving that S'is large
given d.

Proof of Theorem 17.1. We will prove that @, ¢ AC®[q] where g is a prime greater than 2. The proof can
be extended to replace @ by any @, with p # q.

The Approximators For a gate g of height d’ in the circuit, the set of approximators A, will be polyno-
mials over IF,. of total degree < néi_d.

Gate approximators

e —gates: If g = —h, defineg =1 — h. This yields no increase in error or degree.

o &, gates: If g = ®4(h1,...,hy), define g = (Zle ﬁi)q_l. Since ¢ is a prime, by Fermat’s little
theorem we see that there is no error in the output. However, the degree increases by a factor of ¢ — 1.

e V gate:
Note that without loss of generality we can assume that other gates are \ gates: We can replace the
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A gates by — and Vv gates and since the — gates do not cause any error or increase in degree we can
“ignore” them. o s
Suppose that g = \/i?:1 h;. Choose 71, --- ,7 €g {0,1}%. Let h = (hy,--- , hy). Then

1 if \/i=1%h; =0, and
<1/2 otherwise.

PthzO(qun:{

(This follows because if \/¥_, h; = 1 then there exists 5 such that h; # 0 in which case if we fix the
remaining coordinates of 7, there is at most one choice for the 5 coordinate of 7 such that 7 h=0
(mod q).)

Let g; = (r - )9~ ! and define

For each fixed vector of inputs £,

k
P[4\ ] < (1/2)"

i=1

Therefore, there exists 77, - - - , 7 such that g and \/f:1 h; differ on at most a (1/2) fraction of inputs.

Also note that the increase in degree from the &; to § is (¢ — 1)t. We will choose ¢ = n%/(q —1).

Thus we obtain the following lemma:

Lemma 17.2. Let ¢ > 2 be prime. Every AC[q] circuit of size S and depth d has a degree ((¢ — 1)t)¢
polynomial approximator over ', with fractional error at most 275,
In particular, setting t = n/CD thereis a degree /n approximator for the output of the circuit having

q—1
nl/(2d)
eror <2 «1 S,

In contrast we have the following property of approximators for &s.

Lemma 17.3. For ¢ > 2 primeand » > 100, any /n degree polynomial approximator for &, over I, has
error at least 1/5.

Proof. Let U = {0,1}" be the set of all inputs. Let G C U be the set of “good” inputs, those on which a
degree \/n polynomial a agrees with &,.

Instead of viewing @2 as {0,1}" — {0, 1} we consider @} : {—1,1}" — {—1, 1} where we interpret
—1 as representing 1 and 1 as representing 0. In particular, ®5(y1,--- ,yn) = [[; yi- where y; = (—1)%:.
We get that ®o (21, -+ ,x,) = 1ifand only if ®5(y1,- -+ ,yn) = —1.

We can see that the x; — y; map can be expressed using a linear map m as follows
m(z;) = 2x; — 1 and since ¢ is odd, m has an inverse map m ! (y;) = (y; + 1)/2

Thus, given a of /n-degree polynomial that approximates &5, we can get an approximator o’ of \/n
degree that approximates &/, by defining

a/(yla e 7yn) = m(a(m_l(y1)7 T 7m_1(yn)))'
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It is easy to see that «’ and @, agree on the image m(G) of G.
Let F¢ be the set of all functions f : m(G) — Fy. It is immediate that

Fa| = ¢°l. (17.1)

Given any f € Fg we can extend f to a polynomial ps : {1,—-1}" — F, such that f and p; agree
everywhere on m(G). Since y? = 1, we see that p; is multilinear. We will convert p to a (n + \/n)/2-
degree polynomial.

Each monomial [T, .,y of py is converted as follows:

e if |T| < (n+ +/n)/2, leave the monomial unchanged.

o if |T| > (n+ /n)/2, replace [];.r vi by o’ [[;cp vi Where T = {1,...,n} — T. Since y? = 1 we
have that [ [;c7 yi [Lier vi = [licrar vi- Since on m(G), a'(y1, ..., yn) = T1i; vi, We get that
[Licryi = ¢ T1;cr ys onm(G). The degree of the new polynomial is |T'|4-/n < (n—y/n)/2++/n =
(n+v/n)/2.

Thus |F¢| is at most the number of polynomials over F, of degree < (n + /n)/2. Since each such
polynomial has a coefficient over I, for each monomial of degree at most (n + /n)/2,

|Fal < ™ (17.2)
where
(n++/n)/2 4
M = ny < Z9n 17.3
; () <z (17.3)

for n > 100. This latter bound follows from the fact that this sum consists of the binomial coefficients up to
one standard deviation above the mean. In the limit as n — oo this would approach the normal distribution
and consist of roughly 68% of all weight. By »n around 100 this yields at most 80% of all weight.

From equations 17.1,17.2 and 17.3 we get |G| < |M| < 22". Hence the error > 1/5. O

Corollary 17.4. For ¢ > 2 prime, any AC°[g] circuit of size S and depth d computing @, requires S >
1

n?2

2a-1

Ui

Proof. Follows from Lemmas 17.2 and 17.3. O
This yields the proof of Theorem 17.1. O

From Corollary 17.4, we can see that for polynomial-size AC'[q] circuits computing @2, the depth d =

O(jpfn-). By the lemma from the last lecture that NC' C AC—SIZEDEPTH(nOW, O(28%)) any

asymptotically larger depth lower bound for any function would be prove that it is not in NC*.

Our inability to extend the results above to the case that ¢ is not a prime is made evident by the fact that
following absurd possibility cannot be ruled out.

Open Problem 17.1. Is NP C AC°[6] ?

The strongest kind of separation result we know for any of the NC classes is the following result which
only holds for the uniform version of ACC°. It uses diagonalization.
Theorem 17.5 (Allender-Gore). PERM ¢ UniformACC.



