CSE 532 Spring 2008 Computational Complexity II
 Problem Set \#1
 Due: May 2, 2008

Problems:

1. Show that if NP $\subseteq \operatorname{TIME}\left(n^{\log n}\right)$ then $\mathrm{PH} \subseteq \bigcup_{k} \operatorname{TIME}\left(n^{\log ^{k} n}\right) . \Sigma_{k}^{p} \subseteq \operatorname{TIME}\left(n^{\log ^{c k} n}\right)$.
2. Show that \#2-SAT is \#P-complete.
3. This problem will derive Lupanov's bound on the worst-case size required to compute any Boolean function on n bits. The key to this construction is to compute many functions of fewer than n bits using a single circuit that has more than one node as an output node.
(a) Show how to compute all conjunctions from $\left\{x_{1}, \ldots, x_{m}\right\}$ efficiently using a single circuit.
(b) View the inputs to f as defining a $2^{k} \times 2^{n-k}$ matrix. For some parameter $s \leq 2^{k}$ partition the rows of f into groups of size s and one remaining group. Then represent f as $\bigvee_{i, v}\left(f_{i, v}\left(x_{1}, \ldots, x_{k}\right) \wedge f_{i, v}^{\prime}\left(x_{k+1}, \ldots, x_{n}\right)\right)$ for $i \in[p]$ and $v \in\{0,1\}^{s}$ where $p=\left\lceil 2^{k} / s\right\rceil$, each of the functions $f_{i, v}$ is 1 on at most s inputs, and for each $i \in[p]$ the functions $f_{i, v}^{\prime}$ taken together are 1 on at most 2^{n-k} inputs.
(c) Use the properties of part (b) to find an efficient construction using the circuit from (a) that computes f. Then choose values of k and s to optimize the construction and derive a size $2^{n} / n+o\left(2^{n} / n\right)$ circuit that computes f.
4. Even if $P=N P$ we do not know whether $\# P \subseteq F P$.
(a) Show that if $\mathbf{P}=\mathrm{NP}$ then for every $f \in \# \mathrm{P}$ there is a randomized algorithm that approximates f within a factor of 2 . Hint: Use a hashing-based method for estimating the size of a set, as given in the proof of the Valiant-Vazirani lemma or Lautemann's Lemma.
(b) Under the same assumption, improve the approximation factor.
