
Lecture 1

Polynomial Time Hierarchy

April 1, 2008

Lecturer: Paul Beame

Notes:

1.1 Polynomial Time Hierarchy

We first define the classes in the polynomial-time hierarchy.

Definition 1.1 For each integer i, define the complexity class Σp
i to be the set of all languages L

such that there is a polynomial time Turing machine M and a polynomial q such that

x ∈ L ⇔ ∃y1 ∈ {0, 1}q(|x|)∀y2 ∈ {0, 1}q(|x|) · · ·Qiyi ∈ {0, 1}q(|x|).M(x, y1, . . . , yi) = 1

where

Qi =

{

∀ if i is even

∃ if i is odd
,
and define the complexity class Πp

i to be the set of all languages L such that there is a polynomial
time Turing machine M and a polynomial q such that

x ∈ L ⇔ ∀y1 ∈ {0, 1}q(|x|)∃y2 ∈ {0, 1}q(|x|) · · ·Qiyi ∈ {0, 1}q(|x|).M(x, y1, . . . , yi) = 1

where

Qi =

{

∃ if i is even

∀ if i is odd
.

(It is probably more consistent with notations for other complexity classes to use the notation ΣiP

and ΠiP for the classes Σp
i and Πp

i but the latter is more standard notation.)
The polynomial-time hierarchy is PH =

⋃

k Σp
k =

⋃

k Πp
k.

Observe that Σp
0 = Πp

0 = P, Σp
1 = NP and Πp

1 = coNP. Here are some natural problems in
higher complexity classes.

Exact-Clique = {〈G, k〉 | the largest clique in G has size k} ∈ Σp
2 ∩ Πp

2

since TM M can check one of its certificates is a k-clique in G and the other is not a k + 1-clique
in G.

MinCircuit = {〈C〉 | C is a circuit that is not equivalent to any smaller circuit} ∈ Πp
2

1

since
〈C〉 ∈ MinCircuit ⇔ ∀〈C ′〉∃y s.t. (size(C ′) ≥ size(C) ∨ C ′(y) 6= C(y)).

It is still open if MinCircuit is in Σp
2 or if it is Πp

2-complete However, Umans [1] has shown
that the analogous problem MinDNF is Πp

2-complete (under polynomial-time reductions).
Define

ΣiSAT = {〈ϕ〉 | ϕ is a Boolean formula s.t. ∃y1 ∈ {0, 1}n∀y2 ∈ {0, 1}n · · ·Qiyi ∈ {0, 1}nϕ(y1, . . . , yi) is true}.

and define ΠiSAT similarly. Theorem we can convert the Turing machine computation into a
Booleam formula and show that ΣiSAT is Σi-complete and ΠiSAT is Πi-complete.

It is generally conjectured that ∀i,PH 6= Σp
i .

Lemma 1.2 Πp
i ⊆ Σp

i implies that PH = Σp
i = Πp

i .

1.1.1 Alternative definition in terms of oracle TMs

Definition 1.3 An oracle TM M? is a Turing machine with a separate oracle input tape, oracle
query state qquery, and two oracle answer states, qyes and qno. The content of the oracle tape at
the time that qquery is entered is given as a query to the oracle. The cost for an oracle query is a
single time step. If answers to oracle queries are given by membership in a language A, then we
refer to the instantiated machine as MA.

Definition 1.4 Let PA = {L(MA) | M? is a polynomial-time oracle TM}, let NP
A = {L(MA) |

M? is a polynomial-time oracle NTM}, and coNP
A = {L | L ∈ NP

A}.

Theorem 1.5 For i ≥ 0, Σp
i+1 = NP

Πp

i (= NP
Σp

i).

Proof Σp
i+1 ⊆ NP

Πp

i : The oracle NTM simply guesses y1 and asks (x, y1) for the Πp
i oracle for

∀y2 ∈ {0, 1}q(|x|) . . . Qi+1yi+1 ∈ {0, 1}q(|x|).M(x, y1, y2, . . . , yi+1) = 1.

NP
Πp

i ⊆ Σp
i+1: Given a polynomial-time oracle NTM M? and a Πp

i language A then x ∈ L =
L(MA) if and only if there is an accepting path of MA on input x.

To describe this accepting path we need to include a string y consisting of

• the polynomial length sequence of nondeterministic moves of M?,

• the answers b1, . . . , bm to each of the oracle queries during the computation,

• the queries z1, . . . , zm given to A during the computation,

(Note that each of z1, . . . , zm is actually determined by a deterministic polynomial time computation
given the nondeterministic guesses and prior oracle answers so this can be checked at the end.)
However, we need to ensure that each oracle answer bi is actually the answer that the oracle A
would return on inputs zi.

If all the answers bi were yes answers then after an existential quantifier for y1 = y we could
simply check that (z1, . . . , zm) are the correct queries by checking that they are in Am which is in
Πp

i since A ∈ Πp
i .

2

P

∩NP coNP

NP coNP

2
∆ P

2 2
Σ ∩ ΠP P

2
Σ P

2
Π P

3
∆ P

Figure 1.1: The First Levels of the Polynomial-Time Hierarchy

The difficulty is that verifying the no answers is a Σp
i problem (which likely can’t be expressed

in Πp
i). The trick to handle this is that since A ∈ Σp

i , there is some B ∈ Πp
i−1 ⊆ Πp

i and polynomial

p such that zj /∈ A iff ∃y′j ∈ {0, 1}p(|x|).(zj , y
′
j) ∈ B.

Therefore, to express L using a existentiallly quantified variable y1 that includes y as well as
all y′j such that the query answer bj is no. It follows that x ∈ L iff ∃y1, (x, y1) ∈ A′ for some Πp

i set
A′ and thus L ∈ Σp

i+1.

It follows also that Πp
i+1 = coNP

Σp

i for i ≥ 0. This naturally also suggests the definition:

∆p
0 = P

∆p
i+1 = P

Σp

i for i ≥ 0.

Observe that ∆p
i ⊆ Σp

i ∩ Πp
i and

∆p
1 = P

P = P

Σp
1 = NP

P = NP

Πp
1 = coNP

P = coNP

∆p
2 = P

NP = P
SAT ⊇ coNP

Σp
2 = NP

NP

Πp
2 = coNP

NP.

Also, observe that in fact ExactClique is in ∆p
2 = PNP by querying Clique on 〈G, k〉 and

〈G, k + 1〉.

3

1.2 Non-uniform Complexity

1.2.1 Circuit Complexity

Let Bn = {f | f : {0, 1}n → {0, 1}}. A basis Ω is a subset of
⋃

n Bn.

Definition 1.6 A Boolean circuit over basis Ω is a finite directed acyclic graph C each of whose
nodes is either

1. a source node labelled by either an input variable in {x1, x2, . . .} or constant ∈ {0, 1}, or

2. a node of in-degree d > 0 called a gate, labelled by a function g ∈ Bd ∩ Ω.

There is a sequence of designated output gates (nodes). Typically there will just be one output
node. Circuits can also be defined as straight-line programs with a variable for each gate, by taking
a topological sort of the graph and having each line describes how the value of each variable depends
on its predecessors using the associated function.

Say that Circuit C is defined on {x1, x2, . . . , xn} if its input variables ⊆ {x1, x2, . . . , xn}. C
defined on {x1, x2, . . . , xn} computes a function in the obvious way, producing an output bit vector
(or just a single bit) in the order of the output gate sequence.

Typically the elements of Ω we use are symmetric. Unless otherwise specified Ω = {∧,∨,¬} ⊆
B1 ∪ B2.

Definition 1.7 A circuit family C is an infinite sequence of circuits {Cn}
∞
n=0 such that Cn is

defined on {x1, x2, . . . , xn}
size(Cn) = number of nodes in Cn.
depth(Cn) =length of the longest path from input to output.
A circuit family C has size S(n), depth d(n), iff for each n

size(Cn) ≤ S(n)

depth(Cn) ≤ d(n)

We say that A ∈ SIZEΩ(S(n)) if there exists a circuit family of size S(n) that computes A.
Similarly we define A ∈ DEPTHΩ(d(n)). When we have the De Morgan basis we drop the subscxript
Ω. Note that if another (complete) basis Ω is finite then it can only impact the size of circuits by
a constant factor since any gate with fan-in d can be simulated by a CNF formula of size d2d. We
write POLYSIZE =

⋃

k SIZE(nk + k).
There are undecidable problems in POLYSIZE. In particular

{1n | Turing machine Mn accepts 〈Mn〉} ∈ SIZE(1)

as is any unary language.
Next time we will prove the following theorem due to Karp and Liption:

Theorem 1.8 (Karp-Lipton) If NP ⊆ POLYSIZE then PH = Σp
2 ∩ Πp

2.

References

[1] C. Umans. The minimum equivalant dnf problem and shortest implicants. Journal of Computer

and System Sciences, 63(4):597–611, 2001.

4

