Lecture 1

Polynomial Time Hierarchy

April 1, 2008
Lecturer: Paul Beame
Notes:

1.1 Polynomial Time Hierarchy

We first define the classes in the polynomial-time hierarchy.
Definition 1.1 For each integer i, define the complexity class Σ_{i}^{p} to be the set of all languages L such that there is a polynomial time Turing machine M and a polynomial q such that

$$
x \in L \Leftrightarrow \exists y_{1} \in\{0,1\}^{q(|x|)} \forall y_{2} \in\{0,1\}^{q(|x|)} \cdots Q_{i} y_{i} \in\{0,1\}^{q(|x|)} \cdot M\left(x, y_{1}, \ldots, y_{i}\right)=1
$$

where

$$
Q_{i}= \begin{cases}\forall & \text { if } i \text { is even } \\ \exists & \text { if } i \text { is odd }\end{cases}
$$

and define the complexity class Π_{i}^{p} to be the set of all languages L such that there is a polynomial time Turing machine M and a polynomial q such that

$$
x \in L \Leftrightarrow \forall y_{1} \in\{0,1\}^{q(|x|)} \exists y_{2} \in\{0,1\}^{q(|x|)} \cdots Q_{i} y_{i} \in\{0,1\}^{q(|x|)} \cdot M\left(x, y_{1}, \ldots, y_{i}\right)=1
$$

where

$$
Q_{i}=\left\{\begin{array}{ll}
\exists & \text { if } i \text { is even } \\
\forall & \text { if } i \text { is odd }
\end{array} .\right.
$$

(It is probably more consistent with notations for other complexity classes to use the notation $\Sigma_{i} \mathrm{P}$ and $\Pi_{i} \mathrm{P}$ for the classes Σ_{i}^{p} and Π_{i}^{p} but the latter is more standard notation.)

The polynomial-time hierarchy is $\mathrm{PH}=\bigcup_{k} \Sigma_{k}^{p}=\bigcup_{k} \Pi_{k}^{p}$.
Observe that $\Sigma_{0}^{p}=\Pi_{0}^{p}=\mathrm{P}, \Sigma_{1}^{p}=\mathrm{NP}$ and $\Pi_{1}^{p}=\mathrm{coNP}$. Here are some natural problems in higher complexity classes.

$$
\text { Exact-Clique }=\{\langle G, k\rangle \mid \text { the largest clique in } G \text { has size } k\} \in \Sigma_{2}^{p} \cap \Pi_{2}^{p}
$$

since TM M can check one of its certificates is a k-clique in G and the other is not a $k+1$-clique in G.

$$
\text { MinCircuit }=\{\langle C\rangle \mid \mathrm{C} \text { is a circuit that is not equivalent to any smaller circuit }\} \in \Pi_{2}^{p}
$$

since

$$
\langle C\rangle \in \operatorname{MinCircuiT} \Leftrightarrow \forall\left\langle C^{\prime}\right\rangle \exists y \text { s.t. }\left(\operatorname{size}\left(C^{\prime}\right) \geq \operatorname{size}(C) \vee C^{\prime}(y) \neq C(y)\right)
$$

It is still open if MinCircuit is in Σ_{2}^{p} or if it is Π_{2}^{p}-complete However, Umans [1] has shown that the analogous problem MinDNF is Π_{2}^{p}-complete (under polynomial-time reductions).

Define
$\Sigma_{i} \mathrm{SAT}=\left\{\langle\varphi\rangle \mid \varphi\right.$ is a Boolean formula s.t. $\exists y_{1} \in\{0,1\}^{n} \forall y_{2} \in\{0,1\}^{n} \cdots Q_{i} y_{i} \in\{0,1\}^{n} \varphi\left(y_{1}, \ldots, y_{i}\right)$ is true $\}$.
and define Π_{i} SAT similarly. Theorem we can convert the Turing machine computation into a Booleam formula and show that $\Sigma_{i} \mathrm{SAT}$ is Σ_{i}-complete and $\Pi_{i} \mathrm{SAT}$ is Π_{i}-complete.

It is generally conjectured that $\forall i, \mathrm{PH} \neq \Sigma_{i}^{p}$.
Lemma 1.2 $\Pi_{i}^{p} \subseteq \Sigma_{i}^{p}$ implies that $\mathrm{PH}=\Sigma_{i}^{p}=\Pi_{i}^{p}$.

1.1.1 Alternative definition in terms of oracle TMs

Definition 1.3 An oracle TM $M^{?}$ is a Turing machine with a separate oracle input tape, oracle query state $q_{q u e r y}$, and two oracle answer states, $q_{y e s}$ and $q_{n o}$. The content of the oracle tape at the time that $q_{\text {query }}$ is entered is given as a query to the oracle. The cost for an oracle query is a single time step. If answers to oracle queries are given by membership in a language A, then we refer to the instantiated machine as M^{A}.

Definition 1.4 Let $\mathrm{P}^{A}=\left\{L\left(M^{A}\right) \mid M^{?}\right.$ is a polynomial-time oracle TM$\}$, let $\mathrm{NP}^{A}=\left\{L\left(M^{A}\right) \mid\right.$ $M^{?}$ is a polynomial-time oracle NTM $\}$, and $\operatorname{coNP}^{A}=\left\{\bar{L} \mid L \in \mathrm{NP}^{A}\right\}$.

Theorem 1.5 For $i \geq 0, \Sigma_{i+1}^{p}=\mathrm{NP}^{\Pi_{i}^{p}}\left(=\mathrm{NP}^{\Sigma_{i}^{p}}\right)$.
Proof $\Sigma_{i+1}^{p} \subseteq \mathrm{NP}^{\Pi_{i}^{p}}$: The oracle NTM simply guesses y_{1} and asks $\left(x, y_{1}\right)$ for the Π_{i}^{p} oracle for $\forall y_{2} \in\{0,1\}^{q(|x|)} \ldots Q_{i+1} y_{i+1} \in\{0,1\}^{q(|x|)} \cdot M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1$.
$\mathrm{NP}{ }_{i}^{p} \subseteq \Sigma_{i+1}^{p}$: Given a polynomial-time oracle NTM $M^{?}$ and a Π_{i}^{p} language A then $x \in L=$ $L\left(M^{A}\right)$ if and only if there is an accepting path of M^{A} on input x.

To describe this accepting path we need to include a string y consisting of

- the polynomial length sequence of nondeterministic moves of $M^{\text {? }}$,
- the answers b_{1}, \ldots, b_{m} to each of the oracle queries during the computation,
- the queries z_{1}, \ldots, z_{m} given to A during the computation,
(Note that each of z_{1}, \ldots, z_{m} is actually determined by a deterministic polynomial time computation given the nondeterministic guesses and prior oracle answers so this can be checked at the end.) However, we need to ensure that each oracle answer b_{i} is actually the answer that the oracle A would return on inputs z_{i}.

If all the answers b_{i} were yes answers then after an existential quantifier for $y_{1}=y$ we could simply check that $\left(z_{1}, \ldots, z_{m}\right)$ are the correct queries by checking that they are in A^{m} which is in Π_{i}^{p} since $A \in \Pi_{i}^{p}$.

Figure 1.1: The First Levels of the Polynomial-Time Hierarchy

The difficulty is that verifying the no answers is a Σ_{i}^{p} problem (which likely can't be expressed in Π_{i}^{p}). The trick to handle this is that since $\bar{A} \in \Sigma_{i}^{p}$, there is some $B \in \Pi_{i-1}^{p} \subseteq \Pi_{i}^{p}$ and polynomial p such that $z_{j} \notin A$ iff $\exists y_{j}^{\prime} \in\{0,1\}^{p(|x|)} .\left(z_{j}, y_{j}^{\prime}\right) \in B$.

Therefore, to express L using a existentiallly quantified variable y_{1} that includes y as well as all y_{j}^{\prime} such that the query answer b_{j} is no. It follows that $x \in L$ iff $\exists y_{1},\left(x, y_{1}\right) \in A^{\prime}$ for some Π_{i}^{p} set A^{\prime} and thus $L \in \Sigma_{i+1}^{p}$.

It follows also that $\Pi_{i+1}^{p}=\operatorname{coNP}{ }^{\Sigma_{i}^{p}}$ for $i \geq 0$. This naturally also suggests the definition:

$$
\begin{aligned}
\Delta_{0}^{p} & =\mathrm{P} \\
\Delta_{i+1}^{p} & =\mathrm{P}^{\Sigma_{i}^{p}} \quad \text { for } i \geq 0 .
\end{aligned}
$$

Observe that $\Delta_{i}^{p} \subseteq \Sigma_{i}^{p} \cap \Pi_{i}^{p}$ and

$$
\begin{aligned}
\Delta_{1}^{p} & =\mathrm{P}^{\mathrm{P}}=\mathrm{P} \\
\Sigma_{1}^{p} & =\mathrm{NP}^{\mathrm{P}}=\mathrm{NP} \\
\Pi_{1}^{p} & =\mathrm{coNP}^{\mathrm{P}}=\mathrm{coNP} \\
\Delta_{2}^{p} & =\mathrm{P}^{\mathrm{NP}}=\mathrm{P}^{S A T} \supseteq \operatorname{coNP} \\
\Sigma_{2}^{p} & =\mathrm{NP}^{\mathrm{NP}} \\
\Pi_{2}^{p} & =\operatorname{coNP}^{\mathrm{NP}} .
\end{aligned}
$$

Also, observe that in fact ExactClique is in $\Delta_{2}^{p}=\mathrm{P}^{\mathrm{NP}}$ by querying Clique on $\langle G, k\rangle$ and $\langle G, k+1\rangle$.

1.2 Non-uniform Complexity

1.2.1 Circuit Complexity

Let $\mathbb{B}_{n}=\left\{f \mid f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$. A basis Ω is a subset of $\bigcup_{n} \mathbb{B}_{n}$.
Definition 1.6 A Boolean circuit over basis Ω is a finite directed acyclic graph C each of whose nodes is either

1. a source node labelled by either an input variable in $\left\{x_{1}, x_{2}, \ldots\right\}$ or constant $\in\{0,1\}$, or
2. a node of in-degree $d>0$ called a gate, labelled by a function $g \in \mathbb{B}_{d} \cap \Omega$.

There is a sequence of designated output gates (nodes). Typically there will just be one output node. Circuits can also be defined as straight-line programs with a variable for each gate, by taking a topological sort of the graph and having each line describes how the value of each variable depends on its predecessors using the associated function.

Say that Circuit C is defined on $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ if its input variables $\subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. C defined on $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ computes a function in the obvious way, producing an output bit vector (or just a single bit) in the order of the output gate sequence.

Typically the elements of Ω we use are symmetric. Unless otherwise specified $\Omega=\{\wedge, \vee, \neg\} \subseteq$ $\mathbb{B}_{1} \cup \mathbb{B}_{2}$.

Definition 1.7 A circuit family C is an infinite sequence of circuits $\left\{C_{n}\right\}_{n=0}^{\infty}$ such that C_{n} is defined on $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
size $\left(C_{n}\right)=$ number of nodes in C_{n}.
$\operatorname{depth}\left(C_{n}\right)=$ length of the longest path from input to output.
A circuit family C has size $S(n)$, depth $d(n)$, iff for each n

$$
\begin{aligned}
\operatorname{size}\left(C_{n}\right) & \leq S(n) \\
\operatorname{depth}\left(C_{n}\right) & \leq d(n)
\end{aligned}
$$

We say that $A \in \operatorname{SIZE}_{\Omega}(S(n))$ if there exists a circuit family of size $S(n)$ that computes A. Similarly we define $A \in \operatorname{DEPTH}_{\Omega}(d(n))$. When we have the De Morgan basis we drop the subscxript Ω. Note that if another (complete) basis Ω is finite then it can only impact the size of circuits by a constant factor since any gate with fan-in d can be simulated by a CNF formula of size $d 2^{d}$. We write $\mathrm{POLYSIZE}=\bigcup_{k} \operatorname{SIZE}\left(n^{k}+k\right)$.

There are undecidable problems in POLYSIZE. In particular

$$
\left\{1^{n} \mid \text { Turing machine } M_{n} \text { accepts }\left\langle M_{n}\right\rangle\right\} \in \operatorname{SIZE}(1)
$$

as is any unary language.
Next time we will prove the following theorem due to Karp and Liption:
Theorem 1.8 (Karp-Lipton) If NP \subseteq POLYSIZE then $\mathrm{PH}=\Sigma_{2}^{p} \cap \Pi_{2}^{p}$.

References

[1] C. Umans. The minimum equivalant dnf problem and shortest implicants. Journal of Computer and System Sciences, 63(4):597-611, 2001.

