Lecture 1 Polynomial Time Hierarchy

April 1, 2008 Lecturer: Paul Beame Notes:

1.1 Polynomial Time Hierarchy

We first define the classes in the polynomial-time hierarchy.

Definition 1.1 For each integer *i*, define the complexity class Σ_i^p to be the set of all languages *L* such that there is a polynomial time Turing machine *M* and a polynomial *q* such that

$$x \in L \Leftrightarrow \exists y_1 \in \{0,1\}^{q(|x|)} \forall y_2 \in \{0,1\}^{q(|x|)} \cdots Q_i y_i \in \{0,1\}^{q(|x|)} . M(x,y_1,\ldots,y_i) = 1$$

where

$$Q_i = \begin{cases} \forall & \text{if } i \text{ is even} \\ \exists & \text{if } i \text{ is odd} \end{cases}$$

and define the complexity class Π_i^p to be the set of all languages L such that there is a polynomial time Turing machine M and a polynomial q such that

$$x \in L \Leftrightarrow \forall y_1 \in \{0,1\}^{q(|x|)} \exists y_2 \in \{0,1\}^{q(|x|)} \cdots Q_i y_i \in \{0,1\}^{q(|x|)} . M(x,y_1,\ldots,y_i) = 1$$

where

$$Q_i = \begin{cases} \exists & \text{if } i \text{ is even} \\ \forall & \text{if } i \text{ is odd} \end{cases}.$$

(It is probably more consistent with notations for other complexity classes to use the notation $\Sigma_i \mathsf{P}$ and $\Pi_i \mathsf{P}$ for the classes Σ_i^p and Π_i^p but the latter is more standard notation.)

The polynomial-time hierarchy is $\mathsf{PH} = \bigcup_k \Sigma_k^p = \bigcup_k \Pi_k^p$.

Observe that $\Sigma_0^p = \Pi_0^p = \mathsf{P}$, $\Sigma_1^p = \mathsf{NP}$ and $\Pi_1^p = \mathsf{coNP}$. Here are some natural problems in higher complexity classes.

EXACT-CLIQUE = { $\langle G, k \rangle$ | the largest clique in G has size k} $\in \Sigma_2^p \cap \Pi_2^p$

since TM M can check one of its certificates is a k-clique in G and the other is not a k + 1-clique in G.

MINCIRCUIT = { $\langle C \rangle$ | C is a circuit that is not equivalent to any smaller circuit} $\in \Pi_2^p$

since

$$\langle C \rangle \in \text{MINCIRCUIT} \Leftrightarrow \forall \langle C' \rangle \exists y \ s.t. \ (size(C') \ge size(C) \lor C'(y) \ne C(y))$$

It is still open if MINCIRCUIT is in Σ_2^p or if it is Π_2^p -complete However, Umans [1] has shown that the analogous problem MINDNF is Π_2^p -complete (under polynomial-time reductions).

Define

 $\Sigma_i \text{SAT} = \{ \langle \varphi \rangle \mid \varphi \text{ is a Boolean formula s.t. } \exists y_1 \in \{0,1\}^n \forall y_2 \in \{0,1\}^n \cdots Q_i y_i \in \{0,1\}^n \varphi(y_1,\ldots,y_i) \text{ is true} \}.$

and define Π_i SAT similarly. Theorem we can convert the Turing machine computation into a Booleam formula and show that Σ_i SAT is Σ_i -complete and Π_i SAT is Π_i -complete.

It is generally conjectured that $\forall i, \mathsf{PH} \neq \Sigma_i^p$.

Lemma 1.2 $\Pi_i^p \subseteq \Sigma_i^p$ implies that $\mathsf{PH} = \Sigma_i^p = \Pi_i^p$.

1.1.1 Alternative definition in terms of oracle TMs

Definition 1.3 An oracle TM $M^{?}$ is a Turing machine with a separate oracle input tape, oracle query state q_{query} , and two oracle answer states, q_{yes} and q_{no} . The content of the oracle tape at the time that q_{query} is entered is given as a query to the oracle. The cost for an oracle query is a single time step. If answers to oracle queries are given by membership in a language A, then we refer to the instantiated machine as M^{A} .

Definition 1.4 Let $\mathsf{P}^A = \{L(M^A) \mid M^? \text{ is a polynomial-time oracle TM}\}$, let $\mathsf{NP}^A = \{L(M^A) \mid M^? \text{ is a polynomial-time oracle NTM}\}$, and $\mathsf{coNP}^A = \{\overline{L} \mid L \in \mathsf{NP}^A\}$.

Theorem 1.5 For $i \ge 0$, $\Sigma_{i+1}^p = \mathsf{NP}^{\Pi_i^p}$ $(= \mathsf{NP}^{\Sigma_i^p})$.

Proof $\sum_{i+1}^p \subseteq \mathsf{NP}^{\Pi_i^p}$: The oracle NTM simply guesses y_1 and asks (x, y_1) for the Π_i^p oracle for $\forall y_2 \in \{0, 1\}^{q(|x|)} \dots Q_{i+1}y_{i+1} \in \{0, 1\}^{q(|x|)} \dots M(x, y_1, y_2, \dots, y_{i+1}) = 1.$

 $\mathsf{NP}^{\Pi_i^p} \subseteq \Sigma_{i+1}^p$: Given a polynomial-time oracle NTM $M^?$ and a Π_i^p language A then $x \in L = L(M^A)$ if and only if there is an accepting path of M^A on input x.

To describe this accepting path we need to include a string y consisting of

- the polynomial length sequence of nondeterministic moves of $M^?$,
- the answers b_1, \ldots, b_m to each of the oracle queries during the computation,
- the queries z_1, \ldots, z_m given to A during the computation,

(Note that each of z_1, \ldots, z_m is actually determined by a deterministic polynomial time computation given the nondeterministic guesses and prior oracle answers so this can be checked at the end.) However, we need to ensure that each oracle answer b_i is actually the answer that the oracle Awould return on inputs z_i .

If all the answers b_i were *yes* answers then after an existential quantifier for $y_1 = y$ we could simply check that (z_1, \ldots, z_m) are the correct queries by checking that they are in A^m which is in Π_i^p since $A \in \Pi_i^p$.

Figure 1.1: The First Levels of the Polynomial-Time Hierarchy

The difficulty is that verifying the *no* answers is a Σ_i^p problem (which likely can't be expressed in Π_i^p). The trick to handle this is that since $\overline{A} \in \Sigma_i^p$, there is some $B \in \Pi_{i-1}^p \subseteq \Pi_i^p$ and polynomial *p* such that $z_j \notin A$ iff $\exists y'_j \in \{0,1\}^{p(|x|)} . (z_j, y'_j) \in B$. Therefore, to express *L* using a existentially quantified variable y_1 that includes *y* as well as

Therefore, to express L using a existentially quantified variable y_1 that includes y as well as all y'_j such that the query answer b_j is no. It follows that $x \in L$ iff $\exists y_1, (x, y_1) \in A'$ for some \prod_i^p set A' and thus $L \in \Sigma_{i+1}^p$.

It follows also that $\Pi_{i+1}^p = \operatorname{coNP}^{\Sigma_i^p}$ for $i \ge 0$. This naturally also suggests the definition:

$$\begin{array}{rcl} \Delta^p_0 &=& \mathsf{P} \\ \Delta^p_{i+1} &=& \mathsf{P}^{\Sigma^p_i} & \quad \text{for } i \geq 0. \end{array}$$

Observe that $\Delta_i^p \subseteq \Sigma_i^p \cap \Pi_i^p$ and

$$\begin{array}{rcl} \Delta_1^p &=& \mathsf{P}^\mathsf{P} = \mathsf{P} \\ \Sigma_1^p &=& \mathsf{N}\mathsf{P}^\mathsf{P} = \mathsf{N}\mathsf{P} \\ \Pi_1^p &=& \mathsf{co}\mathsf{N}\mathsf{P}^\mathsf{P} = \mathsf{co}\mathsf{N}\mathsf{P} \\ \Delta_2^p &=& \mathsf{P}^{\mathsf{N}\mathsf{P}} = \mathsf{P}^{SAT} \supseteq \mathsf{co}\mathsf{N}\mathsf{P} \\ \Sigma_2^p &=& \mathsf{N}\mathsf{P}^{\mathsf{N}\mathsf{P}} \\ \Pi_2^p &=& \mathsf{co}\mathsf{N}\mathsf{P}^{\mathsf{N}\mathsf{P}}. \end{array}$$

Also, observe that in fact EXACTCLIQUE is in $\Delta_2^p = \mathsf{P}^{\mathsf{NP}}$ by querying CLIQUE on $\langle G, k \rangle$ and $\langle G, k+1 \rangle$.

1.2 Non-uniform Complexity

1.2.1 Circuit Complexity

Let $\mathbb{B}_n = \{f \mid f : \{0,1\}^n \to \{0,1\}\}$. A basis Ω is a subset of $\bigcup_n \mathbb{B}_n$.

Definition 1.6 A Boolean circuit over basis Ω is a finite directed acyclic graph C each of whose nodes is either

1. a source node labelled by either an input variable in $\{x_1, x_2, \ldots\}$ or constant $\in \{0, 1\}$, or

2. a node of in-degree d > 0 called a *gate*, labelled by a function $g \in \mathbb{B}_d \cap \Omega$.

There is a sequence of designated output gates (nodes). Typically there will just be one output node. Circuits can also be defined as straight-line programs with a variable for each gate, by taking a topological sort of the graph and having each line describes how the value of each variable depends on its predecessors using the associated function.

Say that Circuit C is defined on $\{x_1, x_2, \ldots, x_n\}$ if its input variables $\subseteq \{x_1, x_2, \ldots, x_n\}$. C defined on $\{x_1, x_2, \ldots, x_n\}$ computes a function in the obvious way, producing an output bit vector (or just a single bit) in the order of the output gate sequence.

Typically the elements of Ω we use are symmetric. Unless otherwise specified $\Omega = \{\wedge, \lor, \neg\} \subseteq \mathbb{B}_1 \cup \mathbb{B}_2$.

Definition 1.7 A circuit family C is an infinite sequence of circuits $\{C_n\}_{n=0}^{\infty}$ such that C_n is defined on $\{x_1, x_2, \ldots, x_n\}$

 $size(C_n) =$ number of nodes in C_n .

 $depth(C_n) = length of the longest path from input to output.$

A circuit family C has size S(n), depth d(n), iff for each n

$$size(C_n) \leq S(n)$$

 $depth(C_n) \leq d(n)$

We say that $A \in \mathsf{SIZE}_{\Omega}(S(n))$ if there exists a circuit family of size S(n) that computes A. Similarly we define $A \in \mathsf{DEPTH}_{\Omega}(d(n))$. When we have the De Morgan basis we drop the subscript Ω . Note that if another (complete) basis Ω is finite then it can only impact the size of circuits by a constant factor since any gate with fan-in d can be simulated by a CNF formula of size $d2^d$. We write $\mathsf{POLYSIZE} = \bigcup_k \mathsf{SIZE}(n^k + k)$.

There are undecidable problems in POLYSIZE. In particular

 $\{1^n \mid \text{Turing machine } M_n \text{ accepts } \langle M_n \rangle\} \in \mathsf{SIZE}(1)$

as is any unary language.

Next time we will prove the following theorem due to Karp and Liption:

Theorem 1.8 (Karp-Lipton) If NP \subseteq POLYSIZE then PH = $\Sigma_2^p \cap \Pi_2^p$.

References

 C. Umans. The minimum equivalant dnf problem and shortest implicants. Journal of Computer and System Sciences, 63(4):597–611, 2001.