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From last class, we know that any function on n bits computable by a Turing machine (or RAM,
respectively) in time 7" and space S can be computed by a branching program (BP) (or R-way BP,
respectively) of length T and size at most 25719827 (or 25Flogantloss T o1 5 Jevelled BP). In this
lecture we will see how to use branching programs to prove time-space tradeoff lower bounds.

13.1 Time-space trade-off lower bounds for multi-output problems

In this lecture we also consider multi-output functions. The standard space-bounded model for
computing multi-output functions (the analog of a log-space transducer) has a separate read-only
input tape a separate write-only output tape as well as working tapes. Only the working tapes are
counted towards the amount of space used by an algorithm, and the output tape is written from
left to right. For the above simulation to continue to hold, we need to make a small modification to
the BP model to avoid it having its nodes represent the contents of the output tape. In particular,
we allow some of the edges to be labeled by output values. That is, any edge can have (multiple)
labels of the form “y; = a”, where y is the output string, which means that a is the i-th value of
the output string.

We consider the problem of sorting N integers from [N]. Some of the basic sorting algorithms
that apply to this case include the bucket sort algorithm, which gives us time complexity of O(N)
and space complexity of O(Nlog N), since we need only O(log N) bits to represent the number
of occurrences of any item, or selection sort, which gives us time complexity O(N?) but space
complexity of O(log N). These algorithms gives time-space product of O(N?log N). It is easy to
produce algorithms achieving time-space product of O(N?log N) for any time bound between linear
and quadratic. By some clever ideas, Pagter and Rauhe gave a sorting algorithm with time-space
product of O(N?) for time Q(N log N). Borodin-Cook proved a lower bound of Q(N?/log N) on
the time-space product for sorting and introduced the technique we will use below.

In this lecture we will prove a lower bound of (N?) on the time-space product for problems
related to sorting. Similar lower bounds can be proved for many other problems include computing
A-x for fixed matrices A whose submatrices have full rank, computing universal hash functions, and
pattern matching. We give just one example to illustrate some general features of the technique.

We define the UNIQUE-ELEMENTS problem as follows: Given an input of N integers
Z1,...,xN in [N], output all i such that z; appear exactly once in the sequence. We will prove the
following theorem.



Theorem 13.1 Any algorithm computing UNIQU E-ELEM ENTS that runs in time at most T’
and uses space at most S must have that T - S is Q(N?).

Corollary 13.2 Any RAM algorithm sorting N elements in [/V] that outputs elements in sequence,
runs in time at most 7" and uses space at most S must have T - S = Q(N?).

Proof This follows because UNIQU E-ELEMENTS can be reduced to sorting if we assume that
the output tape is written in left-to-right order.

Since any RAM algorithm computing UNIQUE-ELEMENTS in time at most 1" and uses
space at most S > log, N, there a corresponding there is an N-way levelled BP that computes
UNIQUE-ELEMENTS of length T and size at most 2511082 N+loga T which is 20(9) for relevant
values of T

Theorem 13.3 If an N-way levelled branching program with length 7" and size at most 2° com-
putes UNIQUE-ELEMENTS then T - S is Q(N?).

Proof Let the input to the UNIQU E-ELEM ENT'S problem be given by the uniform distribution
over [N]V. Since for x; to be unique, each of the other N — 1 elements most avoid its value, the
expected output size for UNIQUE-ELEMENTS would then be

E[# outputs for UNIQUE-ELEMENTS] = N(1 —1/N)¥~1 > N/e

since (1 — 1/N)N < 1/e < (1 —1/N)N~! for every integer N > 1.
By Markov’s inequality, we can bound the probability that the output size is at least N/(2e):
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(Let « be the probability in question. Then the expected number of outs would be at most
N-a+2(1—a) and hence a+ (1 — a)5 > 1. Therefore a(1 — &) > & which yields the claimed
bound.)

Let P be the levelled branching program computing UNIQUE-ELEMENTS. 1t is clear that
P must query all input values, i.e T > N. For some h < N/2 to be chosen later, we partition P into
T /h layers of height h each. (Each layer begins at a level that is a multiple of h, called a boundary
and includes h levels of edges.) We call an input on which UNIQUE-ELEMENTS outputs at
least N/(2e) output values a “good input”. It follows that P run on any good input must produce
at least
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output values in some layer. Define m = 57. Thus, for any good input, there exists a node v
at a boundary level such that the sub-program P’ rooted at v in that layer produces at least m
correct output values on this input. The following claim says that this happens with very small
probability.

Cramm:  If m < N/4 and h < N/4, then for any P’ of height at most h,

Pr[P’ outputs at least m correct values | < e M2,



where the probability is taken over the uniform distribution on [N]V.
Proof Since

Pr[P’ outputs > m correct values |

= Z Pr[ the execution follows 7] - Pr[P’ outputs > m correct values | the execution follows 7].
paths =

it suffices that for each path 7 from the root to a sink in P’ we prove that

Pr[P’ outputs > m correct values | the execution follows 7] < e™™/2.

Let s be the number of input variables that are not mentioned along 7. Hence s > N—h—m > N/2.
We also let t to be the number of variables that are output but are not queried along w. Thus
the number of variable queries is N — s — ¢, and the number of input consistent with 7 is NS,
Therefore, the total number of inputs such that > m output values on 7 are correct is at most
(N —m)® - N', where the first factor is the number of assignments for the s variables that avoid
the > m output values.

Thus the claimed probability is at most
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m
Ns+t - (1 N

)s < e—ms/N < e—m/Q'
N

Choosing h = N/4, we have m = [é\g—? < N/4 since T > N. By the claim, there is at most an
e~™/2 fraction of inputs that is mapped to any node in any boundary level such that the subprogram
of height h rooted at this node outputs at least m correct outputs. Since the fraction of “good
inputs” is at least 23%1’ we need

2% . e7m/2 > ! .
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Therefore S > C'm for some constant C' > 0. Since m = C'N?/T for some constant C’, we have
S > CC'N?/T so ST is Q(N?). [

13.2 Time-space trade-off lower bounds for decision problems

In this case we cannot use the progress measure of the number of output values produced to analyze
the complexity. Instead ideas from communication complexity are used. We sketch the approach in
the context of oblivious branching programs using a variation of a method due to Alon and Maass.

Theorem 13.4 Let f: [R]" — {0,1}. Suppose that there is a constant ¢ > 0 such that for any set
of variables S with |S| = 2m for some m there is a restriction p with unset(p) = C such that for any
partition of C' into two sets A, B C [n] of size m, D*(f|,(A, B)) > cm then if there is an oblivious
R-way branching program of length 7" and size at most 2° computing f then T is Q(nlog(n/S)).



Proof Let P be such a branching program. Define k = [T'/n]. Since P is oblivious we can define
a count, g;, of the number of times that variable z; is queried along any path. Since T' < kn the
average value of ¢; is at most k. Therefore, at least n/2 variables x; have ¢; < 2k.

We now divide the branching program into r layers of height h = T'/r = kn/r for some r that we
will fix later. We want to argue that there is an assignment of the layers to the players so that each
player receives layers containing all queries the branching program makes to a subset of variables of
size m, each of which is queried at most 2k times. We will do this using the probabilistic method.

We randomly assign each layer to one of the two players independently. Since each remaining
variable x; is queried at most 2k times, the probability that all of the up to 2k layers in which it is
queried are assigned to a given player is at least 272%. Therefore the expected number of variables
that are only assigned to a given player is at least p = n272k=1,

Although the expected value is large this is not enough to say that both can be achieve simul-
taneously. To do this we use the second moment method. The assignment of variables read in
the same layer is highly correlated. However since each of the remaining variables is queried in
at most 2k layers each of height h its assignment is correlated to that of at most 2kh = 2k?n/r
other variables. If we choose 7 to be Q(k%22*) then this is at most en/22¥ < ey variables for some
constant € > (. Using Chebyshev’s inequality one can then show that there is positive probability
that for both players at least m = u/2 = n/22*+2 variables are only assigned to that player. Let A
and B be the first m such variables for each player respectively and C' be the union of A and B.
Let p be the restriction given by the conditions of the lemma.

We now show how both players can use P to compute f|, with inputs partitioned into A and B
using small communication. They will start at the root and simulate the execution of P. Alice will
simulate P on her layers and Bob will simulate P on his layers. Whenever the layer assignment
switches from one player to the other, that player will communicate the name of the boundary
node in P between the two layers so that the other player can continue the simulation. Each such
communication takes at most S bits and there will be a total of at most r names sent.

Therefore by the hypothesis we have Sr > ¢m = cn/22%72, Given the value of r we have
S > n/(2* k%) > ¢'n/2% for some constants ¢/, ¢’ > 0 so 268 > ¢’n/S. Therefore using T < kn
we have 267/" > ¢'n /S so T/n is Q(log(n/S)) and therefore T is Q(nlog(n/S)). g

Although we won’t go into details one can produce such decision problems f. For obliv-
ious branching programs, the best lower bound we know for an explicit decision problem is
T = Q(nlog? ) due to Babai, Nisan and Szegedy and uses multi-party communication complexity.

For the general R-way branching program model, the best we know for decision problems
is T = Qn log(”lo%)) due to Beame, Jayram, and Saks and extends methods used for read-
k branching programs due to Borodin, Razborov, and Smolensky. The argument can no longer
directly use communication complexity since the variable partition can now be input dependent.

Ajtai was the first to produce superlinear time-space tradeoffs for Boolean branching programs
and for R-way programs for ELEMENT-DISTINCTNESS. The best current lower bound for

lolgi : (%)). Also in this R-way model, we know the same

lower bound of T' = Q(n bg)ig(%)) for the ELEMENT-DISTINCTNESS problem. These

results are due to Beame, Saks, Sun, and Vee.

Boolean branching programs is T' = Q(n




