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Introduction to Some Convergence theorems

Friday 14, 2005
Lecturer: Nati Linial

Notes: Mukund Narasimhan and Chris Ré

2.1 Recap

Recall that forf : T → C, we had defined

f̂(r) =
1
2π

∫
T

f(t)e−irt dt

and we were trying toreconstructf from f̂ . The classical theory tries to determine if/when the following is
true (for an appropriate definition of equality).

f(t) ??=
∑
r∈Z

f̂(r)eirt

In the last lecture, we proved Fejér’s theoremf ∗ kn → f where the∗ denotes convolution andkn (Fej́er
kernels) are trignometric polynomials that satisfy

1. kn ≥ 0

2.
∫

T kn = 1

3. kn(s) → 0 uniformly asn →∞ outside[−δ, δ] for anyδ > 0.

If X is a finite abelian group, then the space of all functionsf : X → C forms an algebra with the operations
(+, ∗) where+ is the usual pointwise sum and∗ is convolution. If instead of a finite abelian group, we take
X to beT then there is no unit in this algebra (i.e., no elementh with the property thath ∗ f = f for all f ).
However thekn behave asapproximate unitsand play an important role in this theory. If we let

Sn(f, t) =
n∑

r=−n

f̂(r)eirt

ThenSn(f, t) = f ∗Dn, whereDn is the Dirichlet kernel that is given by

Dn(x) =
sin

(
n + 1

2

)
s

sin s
2

The Dirichlet kernel does not have all the nice properties of the the Fejér kernel. In particular,
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1. Dn changes sign.

2. Dn does not converge uniformly to 0 outside arbitrarily small[−δ, δ] intervals.

Remark.The choice of an appropriate kernel can simplify applications and proofs tremendously.

2.2 The Classical Theory

Let G be a locally compact abelian group.

Definition 2.1. A character onG is ahomomorphismχ : G → T. Namely a mapping satisfyinχ(g1+g2) =
χ(g1)χ(g2) for all g1, g2 ∈ G.

If χ1, χ2 are any two characters ofG, then it is easily verified thatχ1χ2 is also a character ofG, and so
the set of characters ofG forms a commutative group under multiplication. An important role is played by
Ĝ, the group of all continuous characters. For example,T̂ = Z andR̂ = R.

For any functionf : G → C, associate with it a function̂f : Ĝ → C wheref̂(χ) = 〈f, χ〉. For
example, ifG = T thenχr(t) = eirt for r ∈ Z. Then we havêf(χr) = f̂(r). We call f̂ : Ĝ → C the
Fourier transform off . Now Ĝ is also a locally compact abelian group and we can play the same game

backwards to construct̂̂f . Pontryagin’s theorem asserts thatˆ̂
G = G and so we can ask the question: Does

ˆ̂
f = f ? While in theory Fej́er answered the question of whenf̂ uniquely determinesf , this question is still
left unanswered.

For the general theory, we will also require a normalized nonnegative measureµ onG that is translation
invariant:µ(S) = µ(a + S) = µ ({a + s |s ∈ S }) for everyS ⊆ G anda ∈ G. There exists a unique such
measure which is called the Haar measure.

2.3 Lp spaces

Definition 2.2. If (X, Ω, µ) is a measure space, thenLp(X, Ω, µ) is the space of all measureable functions
f : X → R such that

‖f‖p =
[∫

X
|f |p · dµ

] 1
p

< ∞

For example, ifX = N, Ω is the set of all finite subsets ofX, andµ is the counting measure, then

‖(x1, x2, . . . , xn, . . . )‖p = (
∑

|xi|p)
1
p . Forp = ∞, we define

‖x‖∞ = sup
i∈N

|xi|

Symmetrizationis a technique that we will find useful. Loosely, the idea is that we are averaging over
all the group elements.

Given a functionf : G → C, we symmetrize it by definingg : G → C as follows.

g(x) =
∫

G
f(x + a) dµ(a)
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We will use this concept in the proof of the following result.

Proposition 2.1. If G is a locally compact abelian group, with a normalized Haar measureµ, and if
χ1, χ2 ∈ Ĝ are two distinct characters then〈χ1, χ2〉 = 0. i.e.,

I =
∫

X
χ1(x)χ2(x) dµ(x) = δχ1,χ2 =

{
0 χ1 6= χ2

1 χ1 = χ2

Proof. For any fixeda ∈ G, I =
∫
X χ1(x)χ2(x) dµ(x) =

∫
X χ1(x + a)χ2(x + a) dµ(x). Therefore,

I =
∫

X
χ1(x + a)χ2(x + a) dµ(x)

=
∫

X
χ1(x)χ1(a)χ2(x)χ2(a) dµ(x)

= χ1(a)χ2(a)
∫

X
χ1(x)χ2(x) dµ(x)

= χ1(a)χ2(a)I

This can only be true if eitherI = 0 or χ1(a) = χ2(a). If χ1 6= χ2, then there is at least onea such that
χ1(a) 6= χ2(a). It follows that eitherχ1 = χ2 or I = 0.

By letting χ2 be the character that is identically 1, we conclude thatχ ∈ Ĝ with χ 6= 1 for any∫
G χ(x) dµ(x) = 0.

2.4 Approximation Theory

Weierstrass’s theorem states that the polynomials are dense inL∞[a, b] ∩ C[a, b]1 Fej́er’s theorem is about
approximating functions using trignometric polynomials.

Proposition 2.2. cos nx can be expressed as a degreen polynomial incos x.

Proof. Use the identitycos(u + v) + cos(u− v) = 2 cos u cos v and induction on n.

The polynomialTn(x) whereTn(cos x) = cos(nx) is callednth Chebyshev’s polynomial. It can be
seen thatT0(s) = 1, T1(s) = s, T2(s) = 2s2 − 1 and in generalTn(s) = 2n−1sn plus some lower order
terms.

Theorem 2.3 (Chebyshev).The normalized degreen polynomialp(x) = xn + . . . that approximates the
functionf(x) = 0 (on [−1, 1]) as well as possible in theL∞[−1, 1] norm sense is given by1

2n−1 Tn(x). i.e.,

min
p a normalized polynomial

max
−1≤x≤1

|p(x)| = 1
2n−1

This theorem can be proved using linear programming.

1 This notation is intended to imply that the norm on this space is the sup-norm (clearlyC[a, b] ⊆ L∞[a, b])
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2.4.1 Moment Problems

Suppose thatX is a random variable. The simplest information aboutX are its moments. These are
expressions of the formµr =

∫
f(x)xr dx, wheref is the probability distribution function of X. Amoment

problemasks: Suppose I know all (or some of) the moments{µr}r∈N. Do I know the distribution ofX?

Theorem 2.4 (Hausdorff Moment Theorem). If f, g : [a, b] → C are two continuous functions and if for
all r = 0, 1, 2, . . . , we have ∫ b

a
f(x)xr dx =

∫ b

a
g(x)xr dx

thenf = g. Equivalently, ifh : [a, b] → C is a continuous function with
∫ b
a h(x)xr dx = 0 for all r ∈ N,

thenh ≡ 0.

Proof. By Weierstrass’s theorem, we know that for allε > 0, there is a polynomialP such that
∥∥h− P

∥∥
∞ <

ε. If
∫ b
a h(x)xr dx = 0 for all r ∈ N, then it follows that

∫ b
a h(x)Q(x) dx = 0 for every polynomialQ(x),

and so in particular,
∫ b
a h(x)P (x) dx. Therefore,

0 =
∫ b

a
h(x)P (x) dx =

∫ b

a
h(x)h(x) dx +

∫ b

a
h(x)

(
P (x)− h(x)

)
dx

Therefore,

〈h, h〉 = −
∫ b

a
h(x)

(
P (x)− h(x)

)
dx

Since h is continuous, it is bounded on[a, b] by some constantc and so on [a, b] we have∣∣∣h(x)
(
P (x)− h(x)

)∣∣∣ ≤ c · ε · |b− a|. Therefore, for anyδ > 0 we can pickε > 0 so that so that

‖h‖2
2 ≤ δ. Henceh ≡ 0.

2.4.2 A little Ergodic Theory

Theorem 2.5. Letf : T → C be continuous andγ be irrational. Then

lim
n→∞

1
n

n∑
r=1

f
(
e2πir

)
=

∫
T

f(t) dt

Proof. We show that this result holds whenf(t) = eist. Using Fej́er’s theorem, it will follow that the result
holds for any continuous function. Now, clearly12π

∫
T eist dt = 0. Therefore,∣∣∣∣∣ 1n

n∑
r=1

e2πirsγ − 1
2π

∫
T

eist dt

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑

r=1

e2πirsγ

∣∣∣∣∣
=

∣∣∣∣ 1ne2πisγ

∣∣∣∣ ∣∣∣∣1− e2πinsγ

1− e2πisγ

∣∣∣∣
≤ 2

n · (1− e2πisγ)

Sinceγ is irrational,1 − e2πisγ is bounded away from 0. Therefore, this quantity goes to zero, and hence
the result follows.
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Figure 2.1: Probability of Property v. p

This result has applications in the evaluations of integrals, volume of convex bodies. Is is also used in
the proof of the following result.

Theorem 2.6 (Weyl). Letγ be an irrational number. Forx ∈ R, we denote by〈x〉 = x− [x] the fractional
part ofx. For any0 < a < b < 1, we have

lim
n→∞

|{1 ≤ r ≤ n : a ≤ 〈rγ〉 < b}|
n

= b− a

Proof. We would like to use Theorem 2.5 with the functionf = 1[a,b]. However, this function is not
continuous. To get around this, we define functionsf+ ≥ 1[a,b] ≥ f− as shown in the following diagram.

f+ and f− are continuous functions approximatingf . We let let them approachf and pass to the
limit.

This is related to a more general ergodic theorem by Birkhoff.

Theorem 2.7 (Birkhoff, 1931). Let (Ω,F , p) be a probability measure andT : Ω → Ω be a measure
preserving transformation. LetX ∈ L1(Ω,F , p) be a random variable. Then

1
n

n∑
k=1

X ◦ T k → E [X; I]

WhereI is theσ-field ofT -invariant sets.

2.5 Some Convergence Theorems

We seek conditions under whichSn(f, t) → f(t) (preferably uniformly). Some history:

• DuBois Raymond gave an example of a continuous function such thatlim supSn(f, 0) = ∞.

• Kolmogorov [1] found a Lebesgue measureable functionf : T → R such that for allt,
lim supSn(f, t) = ∞.
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• Carleson [2] showed that iff : T → C is a continuous function (even Riemann integrable), then
Sn(f, t) → f(t) almost everywhere.

• Kahane and Katznelson [3] showed that for everyE ⊆ T with µ(E) = 0, there exists a continuous
functionf : T → C such thatSn(f, t) 6→ f(t) if and only if t ∈ E.

Definition 2.3. `p = Lp(N, Finite sets, counting measure). = {x|(x0, . . . )|p < ∞}.

Theorem 2.8. Let f : T → C be continuous and suppose that
∑

r∈Z |f̂(r)| < ∞ (so f̂ ∈ `1). Then
Sn(f, t) → f uniformly onT.

Proof. See lecture 3, theorem 3.1.

2.6 TheL2 theory

The fact thate(t) = eist is an orthonormal family of functions allows to develop a very satisfactory theory.
Given a functionf , the best coefficientsλ1, λ2, . . . , λn so that‖f −

∑n
i=1 λjej‖2 is minimized is given by

λj = 〈f, ej〉. This answer applies just as well in any inner product normed space (Hilbert space) whenever
{ej} forms an orthonormal system.

Theorem 2.9 (Bessel’s Inequality).For everyλ1, λ2, . . . , λn,

∥∥∥∥∥f −
n∑

i=1

λiei

∥∥∥∥∥
2

≥ ‖f‖2 −
n∑

i=1

〈f, ei〉2

with equality whenλi = 〈f, ei〉

Proof. We offer a proof here for the real case, in the next lecture the complex case will be done as well.∥∥∥∥∥f −
n∑

i=1

λiei

∥∥∥∥∥
2

=

∥∥∥∥∥(f −
n∑

i=1

〈f, ei〉ei) + (
n∑

i=1

〈f, ei〉ei −
n∑

i=1

λiei)

∥∥∥∥∥
2

=

∥∥∥∥∥(f −
n∑

i=1

〈f, ei〉ei)

∥∥∥∥∥
2

+

∥∥∥∥∥(
n∑

i=1

〈f, ei〉ei −
n∑

i=1

λiei)

∥∥∥∥∥
2

+ cross terms

cross terms= 2〈f −
n∑

i=1

〈f, ei〉ei,

n∑
i=1

〈f, ei〉ei −
n∑

i=1

λiei〉

Observe that the terms in the cross terms are orthogonal to one another since∀i〈f − 〈f, ei〉ei, ei〉 = 0. We
write

2
∑

〈f, ei〉〈f −
n∑

j=1

〈f, ej〉ej , ei〉 −
n∑
i

λi〈f −
n∑

j=1

〈f, ej〉ei, ei〉

Observe that each innter product term is 0. Since ifi = j, then we apply∀i〈f − 〈f, ei〉ei, ei〉 = 0. If
i 6= j, then they are orthogonal basis vectors.
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We want to make this as small as possible and have only control over theλis. Since this term is squared
and therefore non-negative, the sum is minimized when we set∀i λi = 〈f, ei〉. With this choice,∥∥∥∥∥f −

n∑
i=1

λiei

∥∥∥∥∥
2

= 〈f −
n∑

i=1

λiei, f −
n∑

i=1

λiei〉

= 〈f, f〉 − 2
n∑

i=1

λi〈f, ei〉+
n∑

i=1

λ2
i

= ‖f‖2 −
n∑

i=1

〈f, ei〉2

where the last inequality is obtained by settingλi = 〈f, ei〉.
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