Lecture 2

Introduction to Some Convergence theorems

Friday 14, 2005
Lecturer: Nati Linial
Notes: Mukund Narasimhan and Chris Ré

2.1 Recap

Recall that for $f: \mathbb{T} \rightarrow \mathbb{C}$, we had defined

$$
\hat{f}(r)=\frac{1}{2 \pi} \int_{\mathbb{T}} f(t) e^{-i r t} d t
$$

and we were trying to reconstruct f from \hat{f}. The classical theory tries to determine if/when the following is true (for an appropriate definition of equality).

$$
f(t) \stackrel{? ?}{=} \sum_{r \in \mathbb{Z}} \hat{f}(r) e^{i r t}
$$

In the last lecture, we proved Fejér's theorem $f * k_{n} \rightarrow f$ where the $*$ denotes convolution and k_{n} (Fejér kernels) are trignometric polynomials that satisfy

1. $k_{n} \geq 0$
2. $\int_{\mathbb{T}} k_{n}=1$
3. $k_{n}(s) \rightarrow 0$ uniformly as $n \rightarrow \infty$ outside $[-\delta, \delta]$ for any $\delta>0$.

If X is a finite abelian group, then the space of all functions $f: X \rightarrow \mathbb{C}$ forms an algebra with the operations $(+, *)$ where + is the usual pointwise sum and $*$ is convolution. If instead of a finite abelian group, we take X to be \mathbb{T} then there is no unit in this algebra (i.e., no element h with the property that $h * f=f$ for all f). However the k_{n} behave as approximate units and play an important role in this theory. If we let

$$
S_{n}(f, t)=\sum_{r=-n}^{n} \hat{f}(r) e^{i r t}
$$

Then $S_{n}(f, t)=f * D_{n}$, where D_{n} is the Dirichlet kernel that is given by

$$
D_{n}(x)=\frac{\sin \left(n+\frac{1}{2}\right) s}{\sin \frac{s}{2}}
$$

The Dirichlet kernel does not have all the nice properties of the the Fejér kernel. In particular,

1. D_{n} changes sign.
2. D_{n} does not converge uniformly to 0 outside arbitrarily small $[-\delta, \delta]$ intervals.

Remark. The choice of an appropriate kernel can simplify applications and proofs tremendously.

2.2 The Classical Theory

Let G be a locally compact abelian group.
Definition 2.1. A character on G is a homomorphism $\chi: G \rightarrow \mathbb{T}$. Namely a mapping satisfyin $\chi\left(g_{1}+g_{2}\right)=$ $\chi\left(g_{1}\right) \chi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$.

If χ_{1}, χ_{2} are any two characters of G, then it is easily verified that $\chi_{1} \chi_{2}$ is also a character of G, and so the set of characters of G forms a commutative group under multiplication. An important role is played by \hat{G}, the group of all continuous characters. For example, $\hat{\mathbb{T}}=\mathbb{Z}$ and $\hat{\mathbb{R}}=\mathbb{R}$.

For any function $f: G \rightarrow \mathbb{C}$, associate with it a function $\hat{f}: \hat{G} \rightarrow \mathbb{C}$ where $\hat{f}(\chi)=\langle f, \chi\rangle$. For example, if $G=\mathbb{T}$ then $\chi_{r}(t)=e^{i r t}$ for $r \in \mathbb{Z}$. Then we have $\hat{f}\left(\chi_{r}\right)=\hat{f}(r)$. We call $\hat{f}: \hat{G} \rightarrow \mathbb{C}$ the Fourier transform of f. Now \hat{G} is also a locally compact abelian group and we can play the same game backwards to construct $\hat{\hat{f}}$. Pontryagin's theorem asserts that $\hat{\hat{G}}=G$ and so we can ask the question: Does $\hat{\hat{f}}=f$? While in theory Fejér answered the question of when \hat{f} uniquely determines f, this question is still left unanswered.

For the general theory, we will also require a normalized nonnegative measure μ on G that is translation invariant: $\mu(S)=\mu(a+S)=\mu(\{a+s \mid s \in S\})$ for every $S \subseteq G$ and $a \in G$. There exists a unique such measure which is called the Haar measure.

$2.3 \quad L_{p}$ spaces

Definition 2.2. If (X, Ω, μ) is a measure space, then $L_{p}(X, \Omega, \mu)$ is the space of all measureable functions $f: X \rightarrow \mathbb{R}$ such that

$$
\|f\|_{p}=\left[\int_{X}|f|^{p} \cdot d \mu\right]^{\frac{1}{p}}<\infty
$$

For example, if $X=\mathbb{N}, \Omega$ is the set of all finite subsets of X, and μ is the counting measure, then $\left\|\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)\right\|_{p}=\left(\sum\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$. For $p=\infty$, we define

$$
\|x\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}\right|
$$

Symmetrization is a technique that we will find useful. Loosely, the idea is that we are averaging over all the group elements.

Given a function $f: G \rightarrow \mathbb{C}$, we symmetrize it by defining $g: G \rightarrow \mathbb{C}$ as follows.

$$
g(x)=\int_{G} f(x+a) d \mu(a)
$$

We will use this concept in the proof of the following result.
Proposition 2.1. If G is a locally compact abelian group, with a normalized Haar measure μ, and if $\chi_{1}, \chi_{2} \in \hat{G}$ are two distinct characters then $\left\langle\chi_{1}, \chi_{2}\right\rangle=0$. i.e.,

$$
I=\int_{X} \chi_{1}(x) \overline{\chi_{2}(x)} d \mu(x)=\delta_{\chi_{1}, \chi_{2}}= \begin{cases}0 & \chi_{1} \neq \chi_{2} \\ 1 & \chi_{1}=\chi_{2}\end{cases}
$$

Proof. For any fixed $a \in G, I=\int_{X} \chi_{1}(x) \overline{\chi_{2}(x)} d \mu(x)=\int_{X} \chi_{1}(x+a) \overline{\chi_{2}(x+a)} d \mu(x)$. Therefore,

$$
\begin{aligned}
I & =\int_{X} \chi_{1}(x+a) \overline{\chi_{2}(x+a)} d \mu(x) \\
& =\int_{X} \chi_{1}(x) \chi_{1}(a) \overline{\chi_{2}(x) \chi_{2}(a)} d \mu(x) \\
& =\chi_{1}(a) \overline{\chi_{2}(a)} \int_{X} \chi_{1}(x) \overline{\chi_{2}(x)} d \mu(x) \\
& =\chi_{1}(a) \overline{\chi_{2}(a)} I
\end{aligned}
$$

This can only be true if either $I=0$ or $\chi_{1}(a)=\chi_{2}(a)$. If $\chi_{1} \neq \chi_{2}$, then there is at least one a such that $\chi_{1}(a) \neq \chi_{2}(a)$. It follows that either $\chi_{1}=\chi_{2}$ or $I=0$.

By letting χ_{2} be the character that is identically 1 , we conclude that $\chi \in \hat{G}$ with $\chi \neq 1$ for any $\int_{G} \chi(x) d \mu(x)=0$.

2.4 Approximation Theory

Weierstrass's theorem states that the polynomials are dense in $L_{\infty}[a, b] \cap C[a, b]$ Fejér's theorem is about approximating functions using trignometric polynomials.

Proposition 2.2. $\cos n x$ can be expressed as a degree n polynomial in $\cos x$.
Proof. Use the identity $\cos (u+v)+\cos (u-v)=2 \cos u \cos v$ and induction on n .
The polynomial $T_{n}(x)$ where $T_{n}(\cos x)=\cos (n x)$ is called $n^{\text {th }}$ Chebyshev's polynomial. It can be seen that $T_{0}(s)=1, T_{1}(s)=s, T_{2}(s)=2 s^{2}-1$ and in general $T_{n}(s)=2^{n-1} s^{n}$ plus some lower order terms.

Theorem 2.3 (Chebyshev). The normalized degree n polynomial $p(x)=x^{n}+\ldots$ that approximates the function $f(x)=0$ (on $[-1,1]$) as well as possible in the $L_{\infty}[-1,1]$ norm sense is given by $\frac{1}{2^{n-1}} T_{n}(x)$. i.e.,

$$
\min _{p \text { a normalized polynomial }-1 \leq x \leq 1} \max _{-1}|p(x)|=\frac{1}{2^{n-1}}
$$

This theorem can be proved using linear programming.

[^0]
2.4.1 Moment Problems

Suppose that X is a random variable. The simplest information about X are its moments. These are expressions of the form $\mu_{r}=\int f(x) x^{r} d x$, where f is the probability distribution function of X . A moment problem asks: Suppose I know all (or some of) the moments $\left\{\mu_{r}\right\}_{r \in \mathbb{N}}$. Do I know the distribution of X ?
Theorem 2.4 (Hausdorff Moment Theorem). If $f, g:[a, b] \rightarrow \mathbb{C}$ are two continuous functions and if for all $r=0,1,2, \ldots$, we have

$$
\int_{a}^{b} f(x) x^{r} d x=\int_{a}^{b} g(x) x^{r} d x
$$

then $f=g$. Equivalently, if $h:[a, b] \rightarrow \mathbb{C}$ is a continuous function with $\int_{a}^{b} h(x) x^{r} d x=0$ for all $r \in \mathbb{N}$, then $h \equiv 0$.

Proof. By Weierstrass's theorem, we know that for all $\epsilon>0$, there is a polynomial P such that $\|\bar{h}-P\|_{\infty}<$ ϵ. If $\int_{a}^{b} h(x) x^{r} d x=0$ for all $r \in \mathbb{N}$, then it follows that $\int_{a}^{b} h(x) Q(x) d x=0$ for every polynomial $Q(x)$, and so in particular, $\int_{a}^{b} h(x) P(x) d x$. Therefore,

$$
0=\int_{a}^{b} h(x) P(x) d x=\int_{a}^{b} h(x) \overline{h(x)} d x+\int_{a}^{b} h(x)(P(x)-\overline{h(x)}) d x
$$

Therefore,

$$
\langle h, \bar{h}\rangle=-\int_{a}^{b} h(x)(P(x)-\overline{h(x)}) d x
$$

Since h is continuous, it is bounded on $[a, b]$ by some constant c and so on $[a, b]$ we have $|h(x)(P(x)-\overline{h(x)})| \leq c \cdot \epsilon \cdot|b-a|$. Therefore, for any $\delta>0$ we can pick $\epsilon>0$ so that so that $\|h\|_{2}^{2} \leq \delta$. Hence $h \equiv 0$.

2.4.2 A little Ergodic Theory

Theorem 2.5. Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be continuous and γ be irrational. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} f\left(e^{2 \pi i r}\right)=\int_{\mathbb{T}} f(t) d t
$$

Proof. We show that this result holds when $f(t)=e^{i s t}$. Using Fejér's theorem, it will follow that the result holds for any continuous function. Now, clearly $\frac{1}{2 \pi} \int_{\mathbb{T}} e^{i s t} d t=0$. Therefore,

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{r=1}^{n} e^{2 \pi i r s \gamma}-\frac{1}{2 \pi} \int_{\mathbb{T}} e^{i s t} d t\right| & =\left|\frac{1}{n} \sum_{r=1}^{n} e^{2 \pi i r s \gamma}\right| \\
& =\left|\frac{1}{n} e^{2 \pi i s \gamma}\right|\left|\frac{1-e^{2 \pi i n s \gamma}}{1-e^{2 \pi i s \gamma}}\right| \\
& \leq \frac{2}{n \cdot\left(1-e^{2 \pi i s \gamma}\right)}
\end{aligned}
$$

Since γ is irrational, $1-e^{2 \pi i s \gamma}$ is bounded away from 0 . Therefore, this quantity goes to zero, and hence the result follows.

Figure 2.1: Probability of Property v. p

This result has applications in the evaluations of integrals, volume of convex bodies. Is is also used in the proof of the following result.

Theorem 2.6 (Weyl). Let γ be an irrational number. For $x \in \mathbb{R}$, we denote by $\langle x\rangle=x-[x]$ the fractional part of x. For any $0<a<b<1$, we have

$$
\lim _{n \rightarrow \infty} \frac{|\{1 \leq r \leq n: a \leq\langle r \gamma\rangle<b\}|}{n}=b-a
$$

Proof. We would like to use Theorem 2.5 with the function $f=1_{[a, b]}$. However, this function is not continuous. To get around this, we define functions $f^{+} \geq 1_{[a, b]} \geq f^{-}$as shown in the following diagram.
f^{+}and f^{-}are continuous functions approximating f. We let let them approach f and pass to the limit.

This is related to a more general ergodic theorem by Birkhoff.
Theorem 2.7 (Birkhoff, 1931). Let (Ω, \mathcal{F}, p) be a probability measure and $T: \Omega \rightarrow \Omega$ be a measure preserving transformation. Let $X \in L_{1}(\Omega, \mathcal{F}, p)$ be a random variable. Then

$$
\frac{1}{n} \sum_{k=1}^{n} X \circ T^{k} \rightarrow E[X ; \mathcal{I}]
$$

Where \mathcal{I} is the σ-field of T-invariant sets.

2.5 Some Convergence Theorems

We seek conditions under which $S_{n}(f, t) \rightarrow f(t)$ (preferably uniformly). Some history:

- DuBois Raymond gave an example of a continuous function such that $\lim \sup S_{n}(f, 0)=\infty$.
- Kolmogorov [1] found a Lebesgue measureable function $f: \mathbb{T} \rightarrow \mathbb{R}$ such that for all t, $\limsup S_{n}(f, t)=\infty$.
- Carleson [2] showed that if $f: \mathbb{T} \rightarrow \mathbb{C}$ is a continuous function (even Riemann integrable), then $S_{n}(f, t) \rightarrow f(t)$ almost everywhere.
- Kahane and Katznelson [3] showed that for every $E \subseteq \mathbb{T}$ with $\mu(E)=0$, there exists a continuous function $f: \mathbb{T} \rightarrow \mathbb{C}$ such that $S_{n}(f, t) \nrightarrow f(t)$ if and only if $t \in E$.

Definition 2.3. $\ell_{p}=L_{p}(\mathbb{N}$, Finite sets, counting measure $) .=\left\{\boldsymbol{x}\left|\left(x_{0}, \ldots\right)\right|^{p}<\infty\right\}$.
Theorem 2.8. Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be continuous and suppose that $\sum_{r \in \mathbb{Z}}|\hat{f}(r)|<\infty\left(s o \hat{f} \in \ell_{1}\right)$. Then $S_{n}(f, t) \rightarrow f$ uniformly on \mathbb{T}.

Proof. See lecture 3, theorem 3.1.

2.6 The L_{2} theory

The fact that $e(t)=e^{i s t}$ is an orthonormal family of functions allows to develop a very satisfactory theory. Given a function f, the best coefficients $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ so that $\left\|f-\sum_{i=1}^{n} \lambda_{j} e_{j}\right\|_{2}$ is minimized is given by $\lambda_{j}=\left\langle f, e_{j}\right\rangle$. This answer applies just as well in any inner product normed space (Hilbert space) whenever $\left\{e_{j}\right\}$ forms an orthonormal system.

Theorem 2.9 (Bessel's Inequality). For every $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$,

$$
\left\|f-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|^{2} \geq\|f\|^{2}-\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle^{2}
$$

with equality when $\lambda_{i}=\left\langle f, e_{i}\right\rangle$
Proof. We offer a proof here for the real case, in the next lecture the complex case will be done as well.

$$
\begin{aligned}
&\left\|f-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|^{2}=\left\|\left(f-\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}\right)+\left(\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}-\sum_{i=1}^{n} \lambda_{i} e_{i}\right)\right\|^{2} \\
&=\left\|\left(f-\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}\right)\right\|^{2}+\left\|\left(\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}-\sum_{i=1}^{n} \lambda_{i} e_{i}\right)\right\|^{2}+\text { cross terms } \\
& \text { cross terms }=2\left\langle f-\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}, \sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\rangle
\end{aligned}
$$

Observe that the terms in the cross terms are orthogonal to one another since $\forall i\left\langle f-\left\langle f, e_{i}\right\rangle e_{i}, e_{i}\right\rangle=0$. We write

$$
2 \sum\left\langle f, e_{i}\right\rangle\left\langle f-\sum_{j=1}^{n}\left\langle f, e_{j}\right\rangle e_{j}, e_{i}\right\rangle-\sum_{i}^{n} \lambda_{i}\left\langle f-\sum_{j=1}^{n}\left\langle f, e_{j}\right\rangle e_{i}, e_{i}\right\rangle
$$

Observe that each innter product term is 0 . Since if $i=j$, then we apply $\forall i\left\langle f-\left\langle f, e_{i}\right\rangle e_{i}, e_{i}\right\rangle=0$. If $i \neq j$, then they are orthogonal basis vectors.

We want to make this as small as possible and have only control over the λ_{i} s. Since this term is squared and therefore non-negative, the sum is minimized when we set $\forall i \lambda_{i}=\left\langle f, e_{i}\right\rangle$. With this choice,

$$
\begin{aligned}
\left\|f-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|^{2} & =\left\langle f-\sum_{i=1}^{n} \lambda_{i} e_{i}, f-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\rangle \\
& =\langle f, f\rangle-2 \sum_{i=1}^{n} \lambda_{i}\left\langle f, e_{i}\right\rangle+\sum_{i=1}^{n} \lambda_{i}^{2} \\
& =\|f\|^{2}-\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle^{2}
\end{aligned}
$$

where the last inequality is obtained by setting $\lambda_{i}=\left\langle f, e_{i}\right\rangle$.

References

[1] A. N. Kolmogorov, Une série de Fourier-Lebesgue divergente partout, CRAS Paris, 183, pp. 13271328, 1926.
[2] L. Carleson, Convergence and growth of partial sums of Fourier series, Acta Math. 116, pp. 135-157, 1964.
[3] J-P Kahane and Y. Katznelson, Sur les ensembles de divergence des séries trignométriques, Studia Mathematica, 26 pp. 305-306, 1966

[^0]: ${ }^{1}$ This notation is intended to imply that the norm on this space is the sup-norm (clearly $C[a, b] \subseteq L_{\infty}[a, b]$)

